When do subsets of $\{0, 1\}^{G \times G}$ contain recurrent points?

Dave Witte Morris

University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca Vancouver CMS, December, 2010

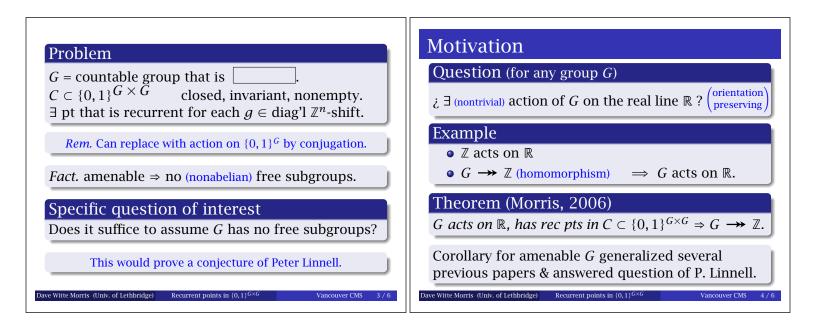
D.W.Morris: Amenable groups that act on the line, Algebraic & Geometric Topology 6 (2006) 2509–2518. http://arxiv.org/abs/math/0606232

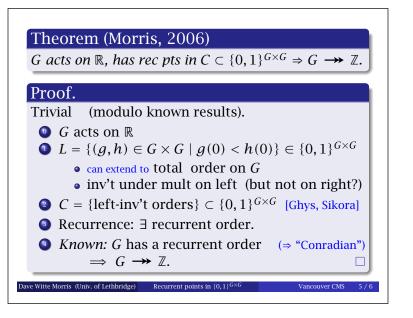
tte Morris (Univ. of Lethbridge) Recurrent points in {0,1

The Question

 $C \subset \{0,1\}^{\mathbb{Z}}$ closed, invariant, nonempty.

Poincaré Recurrence: \exists recurrent point for \mathbb{Z} -shift. In fact, a.e. pt recurrent (w.r.t. any inv't prob meas).


 $C \subset \{0,1\}^{\mathbb{Z}^n \times \mathbb{Z}^n}$ closed, invariant, nonempty. \exists pt recurrent for every $g \in \mathbb{Z}^n$.


Can replace \mathbb{Z}^n with any amenable group (or torsion grp — every el't has finite order)

Question

Dave Witte Morris (Univ. of Lethbridge) Recurrent points in $\{0,1\}^{G \times G}$

Replace \mathbb{Z}^n with other interesting classes of groups?

