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Abstract

It is not difficult to see that every group homomorphism

from Zk to Rn extends to a homomorphism from Rk

to Rn. (Essentially, this is the fact that a linear trans-
formation can be defined to have any desired action on a
basis.) We will see other examples of discrete subgroups Γ
of connected groups G, such that the homomorphisms de-
fined on Γ can (“almost”) be extended to homomorphisms
defined on all of G.
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What is a superrigid subgroup?

(1. Combinatorial superrigidity)

2. Group-theoretic superrigidity

(3. The analogy)

4. Superrigid subgroups
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(1. Combinatorial superrigidity)

Eg. Two joined triangles

A

B

C
D

A B A C

B C B D C D

This is not rigid.

I.e., it can be deformed (a “hinge”).
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Eg. Tetrahedron

A

B

C

D

A B A C A D

B C B D C D

This is rigid (cannot be deformed).
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Eg. Add a small tetrahedron

A

E

DB

C

A

E

DB

C

A B A C A D

B C B D C D

B E C E D E

This is rigid.
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However, it is not superrigid:
if it is taken apart,
it can be reassembled incorrectly.

A
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DB

C
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C
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D
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D
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E

A B A C A D

B C B D C D

B E C E D E
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A

B

C

D

A B A C A D

B C B D C D

A tetrahedron is superrigid: the combinatorial de-
scription determines the geometric structure.

Combinatorial superrigidity:

Make a copy of the object,
according to the combinatorial rules.

The copy is the exact same shape as the original.

This talk: analogue in group theory



9

2. Group-theoretic superrigidity

Group homomorphism φ: Z→ R
d

(i.e., φ(m + n) = φ(m) + φ(n))

⇒ φ extends to a homomorphism φ̂: R→ R
d.

Namely, define φ̂(x) = x · φ(1).

Check:

• φ̂(n) = φ(n)

• φ̂(x + y) = φ̂(x) + φ̂(y)

• φ̂ is continuous

(only allow continuous homomorphisms)
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Group homomorphism φ: Zk → R
d

⇒ φ extends to a homomorphism φ̂: Rk → R
d.

Proof. Use standard basis {e1, . . . , ek} of R
k.

“A linear transformation can
have any desired effect on a basis.”

Linear transformation
⇒ homomorphism of additive groups

Group Representation Theory:
study homomorphisms into Matrix Groups.

GLd(C) = d× d matrices over C

with nonzero determinant

This is a group under multiplication.

R
d ∼=




1 0 0 R

0 1 0 R

0 0 1 R

0 0 0 1



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Group homomorphism φ: Z→ GLd(R)
(i.e., φ(m + n) = φ(m) · φ(n))

	⇒ extends to homo φ̂: R→ GLd(R).

(Only allow continuous homos.)

Proof by contradiction.

0 1
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Suppose ∃ homo φ̂: R→ GLd(R)
with φ̂(n) = φ(n) for all n ∈ Z.

φ̂(0) = I ⇒ det
(
φ̂(0)

)
= 1 > 0

R connected
⇒ φ̂(R) connected
⇒ det

(
φ̂(R)

)
connected

⇒ det
(
φ̂(R)

)
> 0

⇒ det
(
φ(1)

)
> 0

Maybe det
(
φ(1)

)
< 0. →←

(Any A ∈ GLd(R), let φ(n) = An.)
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Group homo φ: Z→ GLd(R)
(i.e., φ(m + n) = φ(m) · φ(n))

	⇒ extends to homo φ̂: R→ GLd(R).

Because: maybe det
(
φ(1)

)
< 0.

However, det
(
φ(even)

)
> 0.

det
(
φ(2m)

)
= det

(
φ(m + m)

)
= det

(
φ(m) · φ(m)

)
=

(
det

(
φ(m)

))2

> 0.
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May have to ignore odd numbers:
restrict attention to even numbers.

Analogously, may need to restrict to multiples of 3
(or 4 or 5 or . . . )

Restrict attention to multiples of N

{multiples of N} is a subgroup of Z

“Restrict attention to a finite-index subgroup”
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Prop. Group homomorphism φ: Zk → GLd(R)

⇒ φ “almost” extends to homo φ̂: Rk → GLd(R)

such that φ̂(Rk) ⊂ φ(Zk). (“Zariski closure”)

This means Z
k is superrigid in R

k.

“Homomorphisms defined on Z
k almost

extend to be defined on R
k”

Generalize to nonabelian groups.



16

Lagrange interpolation:

there is a polynomial curve

y = anxn + an−1x
n−1 + · · ·+ a0

through any n + 1 points.
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Idea: Zar closure is like convex hull.

Image of φ controls image of φ̂.

Eg. If all matrices in φ(Z) commute, then all ma-
trices in φ̂(R) commute.

Eg. If all matrices in φ(Z) fix a vector v, then all
matrices in φ̂(R) fix v.
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(3. The analogy)

Combinatorial superrigidity:

Make a copy of the object,
according to the combinatorial rules.

The copy is the exact same shape as the original.

Maybe not exactly the same object:
may be rotated from the original position;
may be translated from original position.

These are trivial modifications:
rotations and translations are symmetries of the
whole universe (Euclidean space R

3).
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Combinatorial superrigidity:

Make a copy of the object, according to the com-
binatorial rules.

The same result can be obtained by keeping the
original object and moving the whole universe to
a new position.

“If the object can be moved somewhere,
then the whole universe can be moved there.”

Let H be a subgroup of a group G.
Superrigid means:

homomorphism φ:H → GLd(R) extends
to homomorphism φ̂:G→ GLd(R)

Group-theoretic superrigidity:

Make a copy of H as a group of matrices.

The same copy of H can be obtained by moving
all of G into a group of matrices.
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4. Superrigid subgroups

Prop. Group homomorphism φ: Zk → GLd(R)
⇒ φ “almost” extends to homo φ̂: Rk → GLd(R)
such that φ̂(Rk) ⊂ φ(Zk). (“Zariski closure”)

This means Z
k is superrigid in R

k.

Generalize to nonabelian groups.

Z
k is a lattice in R

k. I.e.,

• R
k is a (simply) connected grp

(“Lie group”)

• Z
k is a discrete subgroup

• all of R
k is within a bounded distance of Z

k

∃C, ∀x ∈ R
k, ∃m ∈ Z

k, d(x, m) < C.

H is a lattice in G
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All of R
k is within

√
k/2 of Z

k
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Let us consider solvable groups.

A connected subgroup G of GLd(C) is solvable if
it is upper triangular

G ⊂


 C

×
C C

0 C
×

C

0 0 C
×




(or is after a change of basis).

Eg. All abelian groups are solvable.

Proof. Every matrix can be triangularized over C.

Pairwise commuting matrices can be simultane-
ously triangularized.
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Prop. H superrigid in G

⇒ H = G (mod Z(G)).

Proof. The inclusion H ↪→ GLd(R)
must extend to G ↪→ GLd(R)

with G ⊂ H.

Converse:

Thm (Witte). A lattice H in a solvable grp G is
superrigid iff H = G (mod Z(G)).
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Examples of lattices.

G =




1 R R R

0 1 R R

0 0 1 R

0 0 0 1




H =




1 Z Z Z

0 1 Z Z

0 0 1 Z

0 0 0 1




G =


 R

+ 0 0
0 R

+ 0
0 0 R

+




H =


 2Z 0 0

0 2Z 0
0 0 2Z



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G =


 1 R C

0 1 0
0 0 1


 G = G

H =


 1 Z Z + Zi

0 1 0
0 0 1


 H = G

G′ =


 1 t C

0 1 0
0 0 e2πit




G′ =


 1 R C

0 1 0
0 0 T




H ′ =


 1 Z Z + Zi

0 1 0
0 0 1


 = H
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H is a lattice in both G and G′.

H = G 	= G′ so H 	= G′

H is not superrigid in G′.

E.g., the identity map φ:H → H

does not extend to homo φ̂:G′ → H.

Proof. Note that H = G is abelian
but G′ is not abelian.

A nonabelian group cannot be embedded in an
abelian one.
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H 	= G′: some of the rotations associated to G′ do
not come from rotations associated to H

rot
(

α ∗
0 β

)
=




α

|α| 0

0
β

|β|



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