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Solvable groups.

Defn. (by induction).
e Abelian groups are solvable.
e N <G with N, G/N solvable = G solvable.

(G solv & dNg<a Ny <---< N, with Nz'/Nz'—l abel)

Rem.
e Subgroups of solvable groups are solvable.
e (Quotients of solvable groups are solvable.
e Semidirect products of solv grps are solv.
e “Solvable grps have lots of normal subgrps.”

Prop. A connected Lie group G s solvable iff

c* C C
G—| 0 C* C | cGL4C)
0 0 C~
1 C C
Cor. = |G,G]Cc [0 1 C (unipotent)
0 0 1



Prop. Group homomorphism ¢: 7% — RY
= ¢ extends to homomorphism (ﬁ: RF — RY.

Proof. T' = graph(¢) C R* x R? X = spanT.

Claim. X is the graph of a function ¢: RF — R,

o graph(@) is a subgroup = ¢ is a homo.
e graph(¢) C graph(¢) = ¢ extends ¢.
Suffices to show:

1) X projects onto RF.
2) X N(0xRY =0.

1) 71(X) = conn subgrp of R¥ that contains Z"
= 71 (X) = Rk

2) Fact. (spanT)/T" is compact (for any closed I).

T1|graph(¢) 1S proper (because ¢ is continuous)
+ Fact + 71 is a homo = 71| x is proper
= X N, '(0) is compact.



Generalize. I' C G, ¢: ' — H
= ¢ extends to ¢E: G — H.

Defn. Syndetic hull of T':
connected subgrp X D I', such that X/I" is cpct.

Same proof if:
e Every closed I' ¢ G x H has a synd hull.
e No conn, proper subgroup of GG contains I'.

e [{ has no nontrivial compact subgroups.
Furthermore, syndetic hulls unique = ¢E unique.

Fact. H simply connected, solvable Lie group

= H has no nontrivial compact subgroups.

Fact. I' cocompact in simply conn, solvable G

= no conn, proper subgroup of G contains I'.
Eg. G=SO(2)xR®> T'=2Zx(Z,0)

R x (R, 0) is not a subgroup of G,
so I' does not have a syndetic hull in G.
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Fact. In a (simply) connected, unipotent group,

syndetic hulls exist and are unique.

(Uniqueness: exp: g — G is a diffeomorphism,
so intersection of connected subgrps is connected.)

Prop (Malcev). Suppose
e &G and H are connected, unipotent groups
o I' is a lattice in G
e 0:1I' — H 1s a homomorphism.

Then ¢ extends uniquely to qAbz G — H.

Cor (Malcev). I'; lattice in conn, unipotent G;.
IM"=21Y = G = Gs.

More generally [Saito], this is true for simply con-
nected, split, solvable Lie groups, i.e.,
R* C C
GH—| 0 R* C
0 0 R~



Defn. I' discrete subgroup of solvable Lie grp G
I' is superrigid in G-
every finite-dimensional representation of I'
virtually extends to a representation of G

(with the same Zariski closure)

V ¢: T — GL4(R),
3 ¢: G — GL4(R), 31V T,
qb‘f" — (b‘f"v ‘F/F/‘ < 00,

—0

and ¢(G) = ¢(T)

Thm (Witte). I' lattice in simply conn, solv G.
I' superrigid < Adg(l') = AdG.

(Zariski closure)

Borel Density. I' latt in simply conn, solv G
= 3 cpct torus T C AdG, s.t. TAdg(T') = AdG.

Cor (nilshadow). 3 simply conn G' C T x G, s.t.
o G’ DO finite-index subgroup I'" of ", and
o AdG/ (F’) — AdG.




Example.

1 R C 1 7 7+ 7Zi
G=10 1 0 r=(0 1 0
0 0 1 0 0 1
G=0G I =G
1 ¢t C B 1 R C
G=(01 0 G'=[10 1 0
0 0 2™ 0 0 T
1 7 7+ Zi
I"=10 1 0 ~T
0 0 1

I" is a lattice in both G and G’.
r=G#¢ sol # G

" is not superrigid in G’.

E.g., the identity map ¢:I' — I

does not extend to homo ¢: G’ — T.

Proof. I = G is abelian, but G’ is not abelian.



Thm (Witte). I' lattice in simply conn, solv G.
[' superrigid < Adg(I') = AdG.

Cor. If ¢(I') C gb(I’)o, then
e J finite F C Z(¢(F)O),
e 1 homomorphism (:1' — F/,

such that ¢(v) = o(v) ((y) for all v € T.

Cor. If
e o) C o),
e the center of ¢(I') is connected, and
o ¢(F N |G, G]) s unipotent,

then ¢ = ¢E‘1"

Cor. A lattice I' in a conn Lie group G (not nec-

essarily solvable) is “superrigid” iff
o Adg (F) — AdG  mod (cpct ss normal subgrp)

e and semisimple part of I' is “superrigid.”




Thm (Witte). I' lattice in simply conn, solv G.
[' superrigid < Adg(I') = AdG.

Key Lemma. I' C simply connected, solvable G,

s.t. AdgI' D maximal compact torus of AdG
= I' has a unique syndetic hull in G.

Rem. It GG is connected, but not simply connected,
then syndetic hulls exist, but may not be unique.
(E.g., e and T are syndetic hulls of e in T.)

Rem. G split (e.g., unipotent)

= AdG has no conn, compact subgroups
= every closed subgroup has a syndetic hull
= fact used for Malcev and Saito.
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Thm (Witte). I' lattice in simply conn, solv G.
[' superrigid < Adg(I') = AdG.

Cor. T' need not be a lattice for (<=).

Proof. Adgl' = AdG
= AdgI' D maximal cpct subgrp of AdG
= I' has syndetic hull B

So I' is lattice in B, and is Ad-Zariski dense.
Therefore, ¢ (virt) extends to rep’n of B.

B connected, Ad-Zariski dense = B D |G, G].
So not hard to extend to representation of G.

Eg. T' superrigid in B = e xI'" superrigid in A x B

Cor. Discrete subgroup I' of a simply connected
solvable Lie group G is superrigid iff

1) G=AxDB;

2) finite-index I'" C B; and

3) Adpl” = AdpB.
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Thm (Witte). I' lattice in simply conn, solv G.
[' superrigid < Adg(I') = AdG.

Want syndetic hull of I' = graph(¢) in G = GxI'¢.

Key Lemma. I' C (simply) connected, solv G,

s.t. AdgI’ D maximal compact torus of AdG
= I" has a (unique) syndetic hull in G.

©)

Adéf projects onto both AdG  and Adﬁo, but
might not contain max’l cpct torus of the product.

O

Close enough: Adéf projects onto AdG”
= d cpct tori S C Ad@f, Ty C AdT?,

such that ST} is a maximal cpct torus.
['? is Zariski closed

= d cpct torus 1" C '® with AdF—¢T = 1Tj.

S(AdsT) is max’l cpct subgrp of AdG
with S C Adéf and cpct T' C G.
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Lem. I' discrete C conn solvable linear Lie grp G
3 epet S € AdgT and epet T C G s.t.
S(AdgT) is maz’l cpct subgrp of AdG
= I' (virtually) has simply connected syndetic hull.



Key Fact. I' closed C simply conn solv group G
AdgI' D maximal cpct subgrp of AdG
= I' has a unique syndetic hull in G.

Proof. By induction, [I',I'] has a unique syndetic
hull U in |G, G].

Uniqueness = I' C Ng(U). WOLG G = Ng(U).
Mod out U, so I' abel. WOLG G = Cg(I).
Le., ' C Z(G). WOLG G = Z(G) abel. m
Need: Ng(U),Cq(I'), and Z(G) are connected.

Lem. G conn solvable Lie group
e () Zariski-closed subgroup of GL,,(R)
e p:G — GL,(R) homo, such that
e () D maximal compact subgroup of@
= p~ 1 (Q) is connected.

Let P = Adg, Q — NW(U)7 CW(F)’ €.
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Lem. G conn solvable Lie group
e () Zariski-closed subgroup of GL4(RR)
e »: G — GL,(R) homo, such that
e () D maximal compact torus of@
= ¢~ 1(Q) is connected.

Equivalent:

Lem. G, Q conn solvable subgroups of GL4(R),
such that @O O mazximal compact torus of G
= GN @O 1s connected.

FEqg. In R x T, let G = spiral.

G NQ is connected if ) = 0x Tor Rx T
not connected if ) =R x 0
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Fact. Let () be closed subgrp of conn, solv grp G.
Then G/@Q is simply conn <

e () is connected and

e () D maximal compact subgroup of G.

Lem. G, Q conn solvable subgroups of GLg4(R),
such that @O O mazimal compact torus of G
=GN @O 1S connected.

Proof. GNQ, being algebraic, is (virtually) conn.
Thus, we may assume Q = (GNQ)° C G.
Then () normalizes G, so G(@ is a group.

By assumption, Q D max’l cpct torus of G,
so () D max’l cpct torus of the subgroup GQ,
which implies that GQ/Q is simply connected.

Therefore G/(GN Q) ~ GQ/Q is simply conn,
so G N () is connected.
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Lem. G,Q conn solv subgroups of GL,(R).

o @O D compact torus S

e G D compact torus T
such that ST is a mazimal compact torus of G.
= G N @O 18 virtually connected.

Proof. We may assume Q = (G N Q)° C G.
Write G = ((ST) x A) x U, where

e ST is a maximal compact torus,
e A is a maximal split torus, and

e [U is the unipotent radical.
Alter S, T: WOLG Q C SAU, and SNT is finite.

Because T' C G, we have G = (G N (SAU))T.
Also, G is conn and (SAU)NT = SNT is finite.
Therefore, G N (SAU) is virtually connected.

Since () contains the maximal cpct torus S,
previous lemma implies QN (G N(SAU )) " is conn.
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Thm (Witte). I' lattice in simply conn, solv G.
[' superrigid < Adg(I') = AdG.

Lem. I' discrete C conn solvable linear Lie grp G
3 epct S C AdgI’ and ecpet T C G s.t.
S(AdgT) is maz’l epct subgrp of AdG
= I' (virtually) has simply connected syndetic hull.

Proof of Theorem. Let ¢:T" — GLg(R).
G =G x gb(F)o, ' = graph(¢) C G.

Lemma;: T virt’ly has a simply conn synd hull X.
Pass to finite index: I' C X.

Claim. X is graph of a function ¢: G — GLg(R).
o graph(qg) is a subgroup = ¢ is a homo.
e graph(¢) C graph(¢) = ¢ extends ¢.

Suffices to show:
1) X projects onto G.

—0

2) XN(ex@) ) is trivial.



Suffices to show:
1) X projects onto G.

—0

2) XN(ex @) ) is trivial.

A —0

[' = graph(¢) C G x ¢(I')
X = simply connected syndetic hull of )

1) m1(X) = conn subgrp of G that contains I
= 71 (X) = G.

2) 1
+ X/I' is compact

+ 1 is a homomorphism

~ is proper (because ¢ is continuous)

= 71 |x is proper
= X N '(e) is compact.

Every compact subgroup of X is trivial,
because X is simply connected.
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Mostow Rigidity.
e ['1,I'5 lattices in simply conn solv G1, Gy
e Adg,I'1 = AdG;
o m:I'y — I'y isomorphism
= 7 extends to 0:G; — G, =T x G5
where T' is a compact subgroup of AdG5
Project to factors: 7:G; — T, ¢:G1 — Gy

T i1s homo, but ¢ is a crossed homomorphism:

T

(xy)? = () y?
We have I'T =e,s0  (27)? = (2?)7 7% = 29~
Therefore, ¢ induces a diffeo G1/I'1 — G5 /I's.

Thm (Mostow 1954). I'; 2 T’y
= G1/I'1 is diffeomorphic to G5 /T's.

In gen’l,  doubly crossed: (xy)¢ — ((xy“)qb)y y?
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Nilshadow [Auslander (et al)]. “«GQAY

Spse G =T x U (T torus, U nilp)
GA=TxU (kill the action of T") or:
T acts on G by conj: form T'x G =T x (T x U)
Embed G2 in T x G : (t,u) — (t71,t,u)
Anti-diag embedding of T" sends it into Z(G).
Define ¢© = ((g”)_l,g), where m: G — T is proj.
G2 is the img of A (“anti-diag embedding”)

In general: AdG =T x U A:G—-TxG
Kill only subtorus S of T: m: G — S (proj onto .5)

We kill complement to AdgI™ (assume conn).
AdgAFA = AdGA, ['"=e¢

Cor. I'1,I's latt in sc solv G1, Gs.
+ Adg, 'y = AdG,
el =4dnGy -1 C AutGl, F{r ﬁnite,

Gy =GP C T x Gh.
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Lem. A is a crossed homo: (ab)® = (a®)® b2

Cor. I'T = e = A s I'1-equivariant:

(ay)?
In particular, T = T4,

— gPA

Cor. I'1,I's latt in sc solv G1, Gs.
+ Adg, 'y = AdG,

Any 1so m:1'y — I's extends to a I'i-equivariant

crossed 1so m: G1 — Go.

Cor. I'1,I'y latt in sc solv G, Gs.
Any 1so m:1'y — I's extends to a I'i-equivariant

doubly-crossed iso m: G1 — Go.

/

Def. doubly-crossed: (ab)® = ((abw)A)bﬁ b=
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