Superrigid subgroups of solvable Lie groups

Dave Witte

Department of Mathematics Oklahoma State University Stillwater, OK 74078 USA

dwitte@math.okstate.edu http://www.math.okstate.edu/~dwitte Solvable groups.

Defn. (by induction).

- Abelian groups are solvable.
- $N \triangleleft G$ with N, G/N solvable $\Rightarrow G$ solvable.

 $(G \text{ solv} \Leftrightarrow \exists N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_k \text{ with } N_i/N_{i-1} \text{ abel})$ Rem.

- Subgroups of solvable groups are solvable.
- Quotients of solvable groups are solvable.
- Semidirect products of solv grps are solv.
- "Solvable grps have lots of normal subgrps."

Prop. A connected Lie group G is solvable iff $G \hookrightarrow \begin{pmatrix} \mathbb{C}^{\times} & \mathbb{C} & \mathbb{C} \\ 0 & \mathbb{C}^{\times} & \mathbb{C} \\ 0 & 0 & \mathbb{C}^{\times} \end{pmatrix} \subset \operatorname{GL}_{d}(\mathbb{C})$ **Cor.** $\Rightarrow [G, G] \subset \begin{pmatrix} 1 & \mathbb{C} & \mathbb{C} \\ 0 & 1 & \mathbb{C} \\ 0 & 0 & 1 \end{pmatrix}$ (unipotent) **Prop.** Group homomorphism $\phi: \mathbb{Z}^k \to \mathbb{R}^d$ $\Rightarrow \phi$ extends to homomorphism $\hat{\phi}: \mathbb{R}^k \to \mathbb{R}^d$.

Proof. $\hat{\Gamma} = \operatorname{graph}(\phi) \subset \mathbb{R}^k \times \mathbb{R}^d \qquad X = \operatorname{span} \hat{\Gamma}.$

Claim. X is the graph of a function $\hat{\phi} \colon \mathbb{R}^k \to \mathbb{R}^d$.

- graph($\hat{\phi}$) is a subgroup $\Rightarrow \hat{\phi}$ is a homo.
- graph(ϕ) \subset graph($\hat{\phi}$) $\Rightarrow \hat{\phi}$ extends ϕ .

Suffices to show:

- 1) X projects onto \mathbb{R}^k .
- 2) $X \cap (0 \times \mathbb{R}^d) = 0.$
- 1) $\pi_1(X) = \text{conn subgrp of } \mathbb{R}^k$ that contains \mathbb{Z}^k $\Rightarrow \pi_1(X) = \mathbb{R}^k$.

2) Fact. $(\operatorname{span} \hat{\Gamma})/\hat{\Gamma}$ is compact (for any closed $\hat{\Gamma}$).

 $\pi_1|_{\operatorname{graph}(\phi)}$ is proper (because ϕ is continuous) + Fact + π_1 is a homo $\Rightarrow \pi_1|_X$ is proper $\Rightarrow X \cap \pi_1^{-1}(0)$ is compact. Generalize. $\Gamma \subset G, \ \phi \colon \Gamma \to H$ $\stackrel{?}{\Longrightarrow} \phi \text{ extends to } \hat{\phi} \colon G \to H.$

Defn. Syndetic hull of Γ : connected subgrp $X \supset \Gamma$, such that X/Γ is cpct. Same proof if:

- Every closed $\hat{\Gamma} \subset G \times H$ has a synd hull.
- No conn, proper subgroup of G contains Γ .
- H has no nontrivial compact subgroups.

Furthermore, syndetic hulls unique $\Rightarrow \hat{\phi}$ unique. Fact. H simply connected, solvable Lie group

 \Rightarrow H has no nontrivial compact subgroups.

Fact. Γ cocompact in simply conn, solvable G \Rightarrow no conn, proper subgroup of G contains Γ .

Eq. $G = \widetilde{SO}(2) \ltimes \mathbb{R}^2$ $\Gamma = \mathbb{Z} \times (\mathbb{Z}, 0)$

 $\mathbb{R} \times (\mathbb{R}, 0)$ is not a subgroup of G, so Γ does not have a syndetic hull in G. *Fact.* In a (simply) connected, unipotent group, syndetic hulls exist and are unique.

(*Uniqueness:* exp: $\mathfrak{g} \to G$ is a diffeomorphism, so intersection of connected subgrps is connected.)

Prop (Malcev). Suppose

- \bullet G and H are connected, unipotent groups
- Γ is a lattice in G
- $\phi: \Gamma \to H$ is a homomorphism.

Then ϕ extends uniquely to $\hat{\phi}: G \to H$.

Cor (Malcev). Γ_i lattice in conn, unipotent G_i . $\Gamma_1 \cong \Gamma_2 \Rightarrow G_1 \cong G_2$.

More generally [Saito], this is true for simply connected, **split**, solvable Lie groups, i.e.,

$$G, H \hookrightarrow \begin{pmatrix} \mathbb{R}^{\times} & \mathbb{C} & \mathbb{C} \\ 0 & \mathbb{R}^{\times} & \mathbb{C} \\ 0 & 0 & \mathbb{R}^{\times} \end{pmatrix}$$

Defn. Γ discrete subgroup of solvable Lie grp G Γ is superrigid in G:

every finite-dimensional representation of Γ virtually extends to a representation of G

(with the same Zariski closure)

$$\forall \phi: \Gamma \to \operatorname{GL}_d(\mathbb{R}), \exists \hat{\phi}: G \to \operatorname{GL}_d(\mathbb{R}), \qquad \exists \Gamma' \subset \Gamma, \hat{\phi}|_{\Gamma'} = \phi|_{\Gamma'}, \qquad |\Gamma/\Gamma'| < \infty, \operatorname{and} \hat{\phi}(G) = \overline{\phi(\Gamma)}^\circ. \qquad (\text{Zariski closure})$$

Thm (Witte). Γ lattice in simply conn, solv G. Γ superrigid $\Leftrightarrow \overline{\operatorname{Ad}_G(\Gamma)} = \overline{\operatorname{Ad}G}.$

Borel Density. Γ latt in simply conn, solv G $\Rightarrow \exists cpct torus T \subset \overline{AdG}, s.t. T\overline{Ad_G(\Gamma)} = \overline{AdG}.$

Cor (nilshadow). \exists simply conn $G' \subset T \ltimes G$, s.t.

- $G' \supset finite\text{-index subgroup } \Gamma' \text{ of } \Gamma, \text{ and }$
- $\overline{\mathrm{Ad}_{G'}(\Gamma')} = \overline{\mathrm{Ad}G'}.$

$$G = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{C} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} + \mathbb{Z}i \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\overline{G} = G \qquad \qquad \overline{\Gamma} = G$$
$$G' = \begin{pmatrix} 1 & t & \mathbb{C} \\ 0 & 1 & 0 \\ 0 & 0 & e^{2\pi i t} \end{pmatrix} \qquad \overline{G'} = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{C} \\ 0 & 1 & 0 \\ 0 & 0 & \mathbb{T} \end{pmatrix}$$
$$\Gamma' = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} + \mathbb{Z}i \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \Gamma$$

 Γ is a lattice in both G and G'.

$$\overline{\Gamma} = G \neq \overline{G'} \qquad \text{so } \overline{\Gamma} \neq \overline{G'}$$

 Γ is *not* superrigid in G'.

E.g., the identity map $\phi \colon \Gamma \to \Gamma$ does not extend to homo $\hat{\phi} \colon G' \to \overline{\Gamma}$.

Proof. $\overline{\Gamma} = G$ is abelian, but G' is not abelian.

Cor. If $\phi(\Gamma) \subset \overline{\phi(\Gamma)}^{\circ}$, then

- \exists finite $F \subset Z(\overline{\phi(\Gamma)}^{\circ})$,
- \exists homomorphism $\zeta: \Gamma \to F$,

such that $\phi(\gamma) = \hat{\phi}(\gamma) \zeta(\gamma)$ for all $\gamma \in \Gamma$.

Cor. If

- $\phi(\Gamma) \subset \overline{\phi(\Gamma)}^{\circ}$,
- the center of $\overline{\phi(\Gamma)}^{\circ}$ is connected, and
- $\phi(\Gamma \cap [G,G])$ is unipotent,

then $\phi = \hat{\phi}|_{\Gamma}$.

Cor. A lattice Γ in a conn Lie group G (not necessarily solvable) is "superrigid" iff

- $\overline{\mathrm{Ad}_G(\Gamma)} = \overline{\mathrm{Ad}G} \mod (\mathrm{cpct \ ss \ normal \ subgrp})$
- and semisimple part of Γ is "superrigid."

Key Lemma. $\Gamma \subset simply connected, solvable G, s.t. <math>\overline{\operatorname{Ad}_G \Gamma} \supset maximal \ compact \ torus \ of \ \overline{\operatorname{Ad} G}$ $\Rightarrow \Gamma \ has \ a \ unique \ syndetic \ hull \ in \ G.$

Rem. If G is connected, but not simply connected, then syndetic hulls exist, but may not be unique.

(E.g., e and \mathbb{T} are syndetic hulls of e in \mathbb{T} .)

Rem. G split (e.g., unipotent)

 $\Rightarrow \operatorname{Ad} G \text{ has no conn, compact subgroups}$ $\Rightarrow \text{ every closed subgroup has a syndetic hull}$ $\Rightarrow \text{ fact used for Malcev and Saito.}$

Cor. Γ need not be a lattice for (\Leftarrow) .

Proof. $\overline{\mathrm{Ad}_G\Gamma} = \overline{\mathrm{Ad}G}$

 $\Rightarrow \overline{\mathrm{Ad}_G \Gamma} \supset \text{maximal cpct subgrp of } \overline{\mathrm{Ad}G}$ $\Rightarrow \Gamma \text{ has syndetic hull } B$

So Γ is lattice in B, and is Ad-Zariski dense. Therefore, ϕ (virt) extends to rep'n of B.

B connected, Ad-Zariski dense $\Rightarrow B \supset [G, G]$. So not hard to extend to representation of G.

Eg. Γ superrigid in $B \Rightarrow e \times \Gamma$ superrigid in $A \times B$

Cor. Discrete subgroup Γ of a simply connected solvable Lie group G is superrigid iff

1)
$$G = A \rtimes B;$$

2) finite-index
$$\Gamma' \subset B$$
; and

3) $\overline{\mathrm{Ad}_B\Gamma'} = \mathrm{Ad}_B B.$

Want syndetic hull of $\hat{\Gamma} = \operatorname{graph}(\phi)$ in $\hat{G} = G \times \overline{\Gamma^{\phi}}$.

Key Lemma. $\Gamma \subset (simply)$ connected, solv G, s.t. $\overline{\mathrm{Ad}_G\Gamma} \supset maximal \ compact \ torus \ of \ \overline{\mathrm{Ad}G}$ $\Rightarrow \Gamma \ has \ a \ (unique) \ syndetic \ hull \ in \ G.$

 $\overline{\operatorname{Ad}}_{\hat{G}}\widehat{\Gamma}^{\circ} \text{ projects onto both } \overline{\operatorname{Ad}}_{G}^{\circ} \text{ and } \operatorname{Ad}_{\overline{\Gamma}}^{\phi}^{\circ}, \text{ but}$ might not contain max'l cpct torus of the product. Close enough: $\overline{\operatorname{Ad}}_{\hat{G}}\widehat{\Gamma}^{\circ}$ projects onto $\overline{\operatorname{Ad}}_{G}^{\circ}^{\circ}$ $\Rightarrow \exists \operatorname{cpct} \operatorname{tori} S \subset \overline{\operatorname{Ad}}_{\hat{G}}\widehat{\Gamma}, T_{1} \subset \operatorname{Ad}_{\overline{\Gamma}}^{\phi},$ such that ST_{1} is a maximal cpct torus. $\overline{\Gamma}^{\phi}$ is Zariski closed $\Rightarrow \exists \operatorname{cpct} \operatorname{torus} T \subset \overline{\Gamma}^{\phi} \text{ with } \operatorname{Ad}_{\overline{\Gamma}^{\phi}}T = T_{1}.$ $S(\operatorname{Ad}_{\hat{G}}T)$ is max'l cpct subgrp of $\overline{\operatorname{Ad}}_{\hat{G}}$ with $S \subset \overline{\operatorname{Ad}}_{\hat{G}}\widehat{\Gamma}$ and cpct $T \subset \hat{G}$. **Lem.** Γ discrete \subset conn solvable linear Lie grp G $\exists \ cpct \ S \subset \overline{\operatorname{Ad}_G \Gamma} \ and \ cpct \ T \subset G \ s.t.$ $S(\operatorname{Ad}_G T) \ is \ max'l \ cpct \ subgrp \ of \ \overline{\operatorname{Ad} G}$ $\Rightarrow \Gamma (virtually) \ has \ simply \ connected \ syndetic \ hull.$ **Key Fact.** Γ closed \subset simply conn solv group G $\overline{\mathrm{Ad}_G\Gamma} \supset$ maximal cpct subgrp of $\overline{\mathrm{Ad}G}$ $\Rightarrow \Gamma$ has a unique syndetic hull in G.

Proof. By induction, $[\Gamma, \Gamma]$ has a unique syndetic hull U in [G, G].

Uniqueness $\Rightarrow \Gamma \subset N_G(U)$. WOLG $G = N_G(U)$.

Mod out U, so Γ abel. WOLG $G = C_G(\Gamma)$.

I.e., $\Gamma \subset Z(G)$. WOLG G = Z(G) abel.

Need: $N_G(U), C_G(\Gamma)$, and Z(G) are connected.

Lem. G conn solvable Lie group

• Q Zariski-closed subgroup of $\operatorname{GL}_n(\mathbb{R})$

• $\rho: G \to \operatorname{GL}_n(\mathbb{R})$ homo, such that

• $Q \supset maximal \ compact \ subgroup \ of \ G^{\phi}$ $\Rightarrow \rho^{-1}(Q) \ is \ connected.$

Let $\rho = \operatorname{Ad}_G$, $Q = N_{\overline{\operatorname{Ad}}\overline{\operatorname{G}}}(U)$, $C_{\overline{\operatorname{Ad}}\overline{\operatorname{G}}}(\Gamma)$, e.

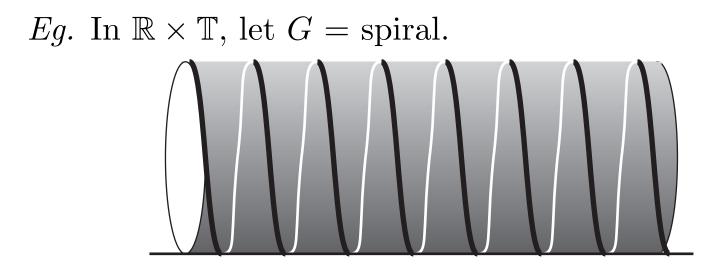
Lem. G conn solvable Lie group

- Q Zariski-closed subgroup of $\operatorname{GL}_d(\mathbb{R})$
- $\phi: G \to \operatorname{GL}_n(\mathbb{R})$ homo, such that

• $Q \supset maximal \ compact \ torus \ of \ G^{\phi}$ $\Rightarrow \phi^{-1}(Q) \ is \ connected.$

Equivalent:

Lem. G, Q conn solvable subgroups of $\operatorname{GL}_d(\mathbb{R})$, such that $\overline{Q}^\circ \supset$ maximal compact torus of \overline{G} $\Rightarrow G \cap \overline{Q}^\circ$ is connected.



 $G \cap Q$ is connected if $Q = 0 \times \mathbb{T}$ or $\mathbb{R} \times \mathbb{T}$ not connected if $Q = \mathbb{R} \times 0$ Fact. Let Q be closed subgrp of conn, solv grp G. Then G/Q is simply conn \Leftrightarrow

- $\bullet \ Q$ is connected and
- $Q \supset \text{maximal compact subgroup of } G$.

Lem. G, Q conn solvable subgroups of $\operatorname{GL}_d(\mathbb{R})$, such that $\overline{Q}^\circ \supset$ maximal compact torus of \overline{G} $\Rightarrow G \cap \overline{Q}^\circ$ is connected.

Proof. $\overline{G} \cap \overline{Q}$, being algebraic, is (virtually) conn. Thus, we may assume $Q = (\overline{G} \cap \overline{Q})^{\circ} \subset \overline{G}$.

Then Q normalizes G, so GQ is a group.

By assumption, $Q \supset \max$ 'l cpct torus of \overline{G} , so $Q \supset \max$ 'l cpct torus of the subgroup GQ, which implies that GQ/Q is simply connected.

Therefore $G/(G \cap Q) \sim GQ/Q$ is simply conn, so $G \cap Q$ is connected. **Lem.** G, Q conn solv subgroups of $GL_n(\mathbb{R})$.

- $\overline{Q}^{\circ} \supset compact \ torus \ S$
- $G \supset compact \ torus \ T$

such that ST is a maximal compact torus of G. $\Rightarrow G \cap \overline{Q}^{\circ}$ is virtually connected.

Proof. We may assume $Q = (\overline{G} \cap \overline{Q})^{\circ} \subset \overline{G}$. Write $\overline{G}^{\circ} = ((ST) \times A) \ltimes U$, where

- ST is a maximal compact torus,
- A is a maximal split torus, and
- U is the unipotent radical.

Alter S, T: WOLG $Q \subset SAU$, and $S \cap T$ is finite.

Because $T \subset G$, we have $G = (G \cap (SAU))T$. Also, G is conn and $(SAU) \cap T = S \cap T$ is finite. Therefore, $G \cap (SAU)$ is virtually connected.

Since Q contains the maximal cpct torus S, previous lemma implies $Q \cap (G \cap (SAU))^{\circ}$ is conn.

Lem. Γ discrete \subset conn solvable linear Lie grp G $\exists \ cpct \ S \subset \overline{\operatorname{Ad}_G \Gamma} \ and \ cpct \ T \subset G \ s.t.$ $S(\operatorname{Ad}_G T) \ is \ max'l \ cpct \ subgrp \ of \ \overline{\operatorname{Ad} G}$

 $\Rightarrow \Gamma$ (virtually) has simply connected syndetic hull.

Proof of Theorem. Let $\phi: \Gamma \to \mathrm{GL}_d(\mathbb{R})$.

 $\hat{G} = G \times \overline{\phi(\Gamma)}^{\circ}, \ \hat{\Gamma} = \operatorname{graph}(\phi) \subset \hat{G}.$

Lemma: $\hat{\Gamma}$ virt'ly has a simply conn synd hull X. Pass to finite index: $\hat{\Gamma} \subset X$.

Claim. X is graph of a function $\hat{\phi}: G \to \mathrm{GL}_d(\mathbb{R})$.

- graph($\hat{\phi}$) is a subgroup $\Rightarrow \hat{\phi}$ is a homo.
- graph(ϕ) \subset graph($\hat{\phi}$) $\Rightarrow \hat{\phi}$ extends ϕ .

Suffices to show:

1) X projects onto G.

2) $X \cap \left(e \times \overline{\phi(\Gamma)}^{\circ}\right)$ is trivial.

Suffices to show:

- 1) X projects onto G.
- 2) $X \cap \left(e \times \overline{\phi(\Gamma)}^{\circ}\right)$ is trivial.
- $\widehat{\Gamma} = \operatorname{graph}(\phi) \subset G \times \overline{\phi(\Gamma)}^{\circ}$
- $X = \text{simply connected syndetic hull of } \hat{\Gamma}$
- 1) $\pi_1(X) = \text{conn subgrp of } G$ that contains Γ $\Rightarrow \pi_1(X) = G.$
- 2) $\pi_1|_{\hat{\Gamma}}$ is proper (because ϕ is continuous) + $X/\hat{\Gamma}$ is compact
- $+ \pi_1 \text{ is a homomorphism}$ $\Rightarrow \pi_1|_X \text{ is proper}$ $\Rightarrow X \cap \pi_1^{-1}(e) \text{ is compact.}$

Every compact subgroup of X is trivial, because X is simply connected. Mostow Rigidity.

- Γ_1, Γ_2 lattices in simply conn solv G_1, G_2
- $\overline{\mathrm{Ad}_{G_1}\Gamma_1} = \overline{\mathrm{Ad}G_1}$
- $\pi: \Gamma_1 \to \Gamma_2$ isomorphism

 $\Rightarrow \pi \text{ extends to } \sigma: G_1 \to \overline{G_2} = T \ltimes G_2$

where T is a compact subgroup of $\operatorname{Ad} G_2$ Project to factors: $\tau: G_1 \to T, \quad \phi: G_1 \to G_2$

 τ is homo, but ϕ is a **crossed homomorphism**: $(xy)^{\phi} = (x^{\phi})^{y^{\tau}} y^{\phi}$

We have $\Gamma_1^{\tau} = e$, so $(x\gamma)^{\phi} = (x^{\phi})^{\gamma^{\tau}} \gamma^{\phi} = x^{\phi} \gamma^{\phi}$. Therefore, ϕ induces a diffeo $G_1/\Gamma_1 \to G_2/\Gamma_2$.

Thm (Mostow 1954). $\Gamma_1 \cong \Gamma_2$ $\Rightarrow G_1/\Gamma_1$ is diffeomorphic to G_2/Γ_2 .

In gen'il, ϕ **doubly** crossed: $(xy)^{\phi} = ((x^{y^{\mu}})^{\phi})^{y'} y^{\phi}$

Nilshadow [Auslander (et al)]. " G^{Δ} "

Spec $G = T \ltimes U$ (*T* torus, *U* nilp) $G^{\Delta} = T \times U$ (kill the action of *T*) or: *T* acts on *G* by conj: form $T \ltimes G = T \ltimes (T \ltimes U)$ Embed G^{Δ} in $T \ltimes G : (t, u) \mapsto (t^{-1}, t, u)$

Anti-diag embedding of T sends it into Z(G). Define $g^{\Delta} = ((g^{\pi})^{-1}, g)$, where $\pi: G \to T$ is proj. G^{Δ} is the img of Δ ("anti-diag embedding")

In general: $\overline{\operatorname{Ad}G} = T \ltimes U$ $\Delta: G \to T \ltimes G$ Kill only subtorus S of $T: \pi: G \to S$ (proj onto S) We kill complement to $\overline{\operatorname{Ad}_G\Gamma}$ (assume conn). $\overline{\operatorname{Ad}_G\Delta}\Gamma^{\Delta} = \overline{\operatorname{Ad}G^{\Delta}}, \quad \Gamma^{\pi} = e$

Cor.
$$\Gamma_1, \Gamma_2$$
 latt in sc solv G_1, G_2 .
+ $\overline{\operatorname{Ad}_{G_1}\Gamma_1} = \overline{\operatorname{Ad}_G}_1$
 $\Gamma_1 \cong \Gamma_2 \Rightarrow \exists \pi: G_1 \to T \subset \operatorname{Aut} G_1, \ \Gamma_1^{\pi} \text{ finite},$
 $G_2 \cong G_1^{\Delta} \subset T \ltimes G_1.$

Lem. Δ is a crossed homo: $(ab)^{\Delta} = (a^{\Delta})^{b^{\pi}} b^{\Delta}$

Cor.
$$\Gamma_1^{\pi} = e \Rightarrow \Delta$$
 is Γ_1 -equivariant:
 $(a\gamma)^{\Delta} = a^{\Delta}\gamma^{\Delta}$
In particular, $\Gamma \cong \Gamma^{\Delta}$.

Cor. Γ_1, Γ_2 latt in sc solv G_1, G_2 . + $\overline{\mathrm{Ad}}_{G_1}\Gamma_1 = \overline{\mathrm{Ad}}_1$ Any iso $\pi: \Gamma_1 \to \Gamma_2$ extends to a Γ_1 -equivariant crossed iso $\hat{\pi}: G_1 \to G_2$.

Cor. Γ_1, Γ_2 latt in sc solv G_1, G_2 . Any iso $\pi: \Gamma_1 \to \Gamma_2$ extends to a Γ_1 -equivariant doubly-crossed iso $\hat{\pi}: G_1 \to G_2$.

Def. doubly-crossed: $(ab)^{\Delta} = ((a^{b^{\pi}})^{\Delta})^{b^{\pi'}} b^{\Delta}$

References

- V. V. Gorbatsevich, On Lie groups with lattices and their properties, *Soviet Math. Dokl.* 33 (1986) 321–325.
- M. Gromov and R. Schoen, Harmonic maps into singular spaces and *p*-adic superrigidity for lattices in groups of rank one, *Publ. Math. IHES* 76 (1992) 165–246.
- F. Grunewald and V. Platonov, On finite extensions of arithmetic groups. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 1153–1158.
- A. I. Malcev, On a class of homogeneous spaces, *Amer. Math. Soc. Transl.* No. 39 (1951) = 9 (1962) 276–307.
- G. A. Margulis, *Discrete Subgroups of Semisimple Lie Groups*, Springer-Verlag, New York, 1991.

• M. V. Milovanov, A description of solvable Lie groups with a given uniform subgroup, *Math.* USSR Sbornik 41 (1982) 83–99.

• M. S. Raghunathan, *Discrete Subgroups of Lie Groups*, Springer-Verlag (New York) 1972.

M. Saito, Sur certains groupes de Lie résolubles II, Sci. Papers Coll. Gen. Ed. Tokyo 7 (1957) 157– 168.

• A. N. Starkov, Rigidity problem for lattices in solvable Lie groups, *Proc. Indian Acad. Sci.* (*Math. Sci.*) 4 (1994).

• D. Witte, Tessellations of solvmanifolds, *Trans. Amer. Math. Soc.* (1998).

• D. Witte, Superrigidity of lattices in solvable Lie groups, *Inventiones Math.* 122 (1995) 147-193.

• D. Witte, Superrigid subgroups of solvable Lie groups, *Proc. Amer. Math. Soc.* 125 (1997) 3433–3438.

• D. Witte, Archimedean superrigidity of solvable S-arithmetic groups, J. Algebra 187 (1997) 268– 288.

• R. J. Zimmer, *Ergodic Theory and Semisimple Groups*, Birkhäuser, Boston, 1984.