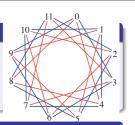
Which circulant digraphs are hamiltonian?

Dave Witte Morris

University of Lethbridge, Alberta, Canada

http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

> Koper, Slovenia June 2007

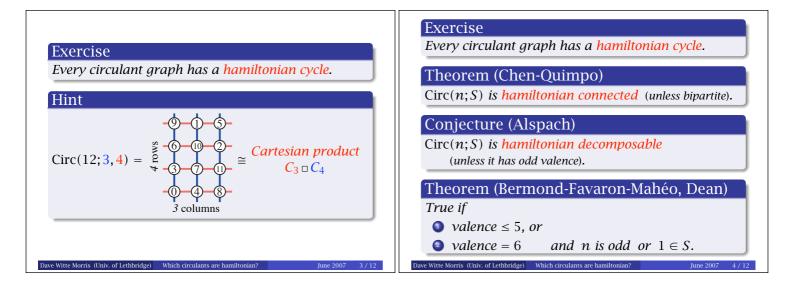

Dave Witte Morris (Univ. of Lethbridge) Which circulants are ha

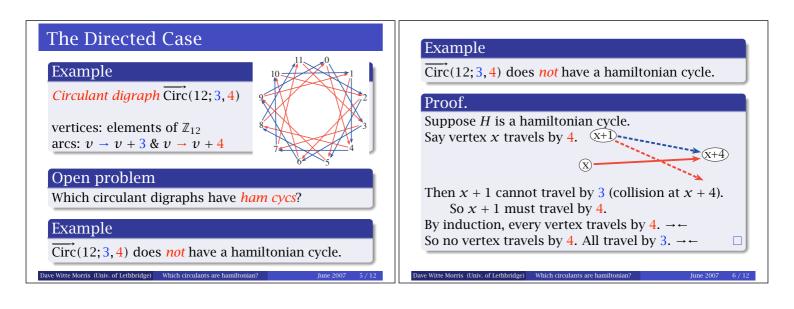
Example

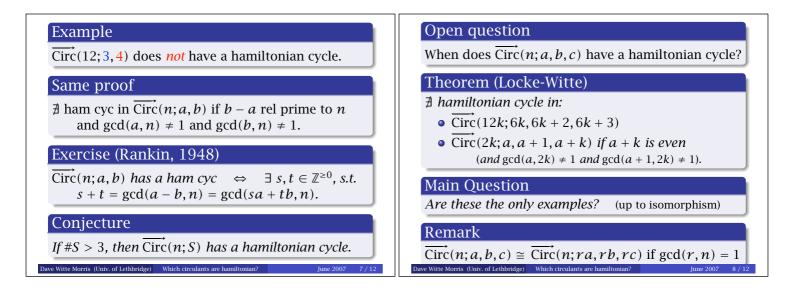
Circulant graph Circ(12; 3, 4)

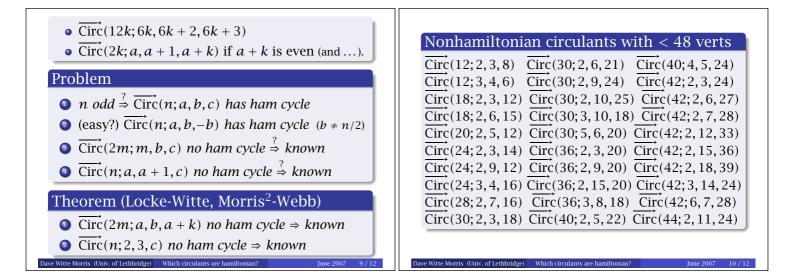
vertices: elements of \mathbb{Z}_{12} edges: $v - v \pm 3 \& v - v \pm 4$

Dave Witte Morris (Univ. of Lethbridge) Which circulants are hamil




Notation


Circ(n; s_1 , s_2 ,..., s_r). Assume *connected*: gcd(s_1 , s_2 ,..., s_r , n) = 1.


Exercise

Every circulant graph has a hamiltonian cycle.

Conjecture

If #S > 3, then $\overline{\text{Circ}}(n; S)$ has a hamiltonian cycle.

Exercise

Conjecture true

- $\Rightarrow \quad \underline{\operatorname{Cay}}(D_{2n};S) \text{ has a hamiltonian cycle}$
- \Rightarrow Cay $(D_{2n}; S)$ has a hamiltonian cycle.

Theorem (Alspach-Zhang)

Dave Witte Morris (Univ. of Lethbridge) Which circulants are hamiltonian?

 $Cay(D_{2n}; S)$ has a hamiltonian cycle if #S = 3.

Some references

D. Witte and J.A. Gallian, A survey: hamiltonian cycles in Cayley digraphs, *Discrete Math.* 51 (1984) 293–304.

S.J. Curran and J.A. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs — a survey, *Discrete Math.* 156 (1996) 1–18.

M. Dean: On Hamilton cycle decomposition of 6-regular circulant graphs, *Graphs and Combinatorics* 22(3) (2006), 331–340.

S.C. Locke and D. Witte: On non-hamiltonian circulant digraphs of outdegree three. *J. Graph Theory* 30 (1999) 319–331.

D. Morris, J. Morris and K. Webb: Hamiltonian cycles in (2, 3, *c*)-circulant digraphs (preprint). http://arxiv.org/abs/math/0610010

Dave Witte Morris (Univ. of Lethbridge) Which circulants are hamiltonian?