









Proof of the Key Fact

- **o** restate: $\exists \Gamma$ -equi $v : G/P \to W$, where $W = \mathbb{R}^{\ell}$. **o** amenability: $\exists \Gamma$ -equi $\hat{v} : G/P \to \operatorname{Prob}(\mathbb{P}(W))$.
- **9 proximality:** Replace *W* with (subspace of) $\bigwedge^k W$, so $\exists g \in \Gamma$ with unique largest eigenval. $\langle steps \ missing \ here \rangle$ Then $\hat{v}(x)$ is point mass, for a.e. *x*;

 \hat{v} is well-defined map into $\mathbb{P}(W)$.

Similarly, \check{v} : $G/P \to \mathbb{P}(W)$. Similarly, \check{v} : $G/P \to \mathbb{P}(W^*)$. $v = \hat{v} \otimes \check{v}$: $G/P \to \mathbb{P}(W \otimes W^*) = \mathbb{P}(\text{End}_{\mathbb{R}}(W))$.
Natural normalization: trace = 1. So v: $G/P \to \text{End}_{\mathbb{R}}(W)$ (vector space).
Write Morris (Univ. of Leithbridge) Part 3: 3 Major Theorems of Marguils EX. Vienna (July 2007) 13 / 17

Why superrigidity implies arithmeticity

Let Γ be a *superrigid* lattice in SL (n, \mathbb{R}) . We wish to show $\Gamma \subset SL(n, \mathbb{Z})$, i.e., $g_{i,j} \in \mathbb{Z}$.

Step 1. $g_{i,i}$ is algebraic

Suppose some $g_{i,j}$ is transcendental. Then \exists field auto φ of \mathbb{C} with $\varphi(g_{i,j}) = ???$ Define $\widetilde{\varphi} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \varphi(a) & \varphi(b) \\ \varphi(c) & \varphi(d) \end{bmatrix}$. This map $\widetilde{\varphi} \colon \Gamma \to \operatorname{GL}(n, \mathbb{C})$ is a group homo. Superrigid: $\widetilde{\varphi}$ extends to $\widehat{\varphi} \colon \operatorname{SL}(n, \mathbb{R}) \to \operatorname{GL}(n, \mathbb{C})$. There are uncountably many different φ 's, but $\operatorname{SL}(n, \mathbb{R})$ has only finitely many *n*-dim'l rep'ns (up to change of basis). $\to \leftarrow$

Step 2. $g_{i,j} \in \mathbb{Q}$

Dave Witte Morris (Univ. of Lethbridge) Part 3: 3 Major Theorems of Margulis

Γ f.g., so $\{g_{i,j}\}$ generates finite extension of \mathbb{Q} . *"algebraic number field"* So Γ ⊂ SL(*n*, *F*). For simplicity, assume Γ ⊂ SL(*n*, \mathbb{Q}).

Step 3. $g_{i,i}$ has no denominator

Actually, show denominators are bounded.

(Then finite-index subgroup has no denoms.) Γ f.g., so finitely many primes appear in denoms. Suffices to show each prime occurs to bdd power. This is the conclusion of *p*-adic superrigidity:

Theorem (Margulis)

• Γ *a lattice in* SL (n, \mathbb{R}) , $n \ge 3$,

Dave Witte Morris (Univ. of Lethbridge) Part 3: 3 Major Theorems of Margulis

• $\varphi \colon \Gamma \to SL(\ell, \mathbb{Q}_p)$ is a group homomorphism,

 $\Rightarrow \varphi(\Gamma) \text{ has compact closure.}$ *I.e.*, $\exists k$, no matrix in $\varphi(\Gamma)$ has p^k in denom.

References

G. A. Margulis: Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin, 1991, MR1090825 (92h:22021), Zbl 0732.22008.
R. J. Zimmer: Ergodic Theory and Semisimple Groups, Birkhäuser, Basel, 1984, MR0776417 (86j:22014), Zbl 0571.58015.

Dave Witte Morris (Univ. of Lethbridge) Part 3: 3 Major Theorems of Margulis ESI, Vienna (July 2007) 17 / 17