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A simple example.
• G = R2 (connected Lie group)
• Γ = Z2 (discrete subgroup)

G/Γ = T2 is compact ⇒ Γ is a cocpct lattice (inG).

Γ = π1(T2) = fund grp of locally symmetric space.

Fundamental domains tessellate R2.

Γ ≈ symmetries of tessellation of R2 (a symmetric space).

Replace R2 with interesting G.
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Replace R2 with interesting G:
Lie group that is conn, noncpct, linear, simple (or ss).

• SL(n,R): n×n real mats of det 1
• SL(n,C), SL(n,H)

• SO(m,n): isometries of x2
1 + x2

2 + · · · + x2
m

− x2
m+1 − · · ·− x2

m+n

• SU(m,n): isometries of |z1|2 + |z2|2 + · · · + |zm|2
− |zm+1|2 − · · ·− |zm+n|2

• Sp(m,n): similar with H

• etc.
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Thm. G = SL(2,R) or SO(1, n) or SU(1, n) or Sp(1, n)
⇒ Γ is Gromov hyperbolic ⇒ Γ has RD.

(Henceforth, we assume R-rankG ≥ 2.)

Thm. G = SL(3,R) or SL(3,C) or SL(3,H) or SL(3,O)
⇒ Γ has RD.

Some small G’s that are open:
SL(4,R) and SO(2,3) ≈ Sp(4,R).

Thm (Margulis Arithmeticity Theorem). Γ is arithmetic.

≈ G ↩ SL(n,R), Γ = G∩ SL(n,Z).

• Γ is on an explicit list.
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Cocompact lattices in SO(2,3).

Eg. Let
• α =

√
2,

• G = SO(x2
1 + x2

2 −αx2
3 −αx2

4 −αx2
5) 0 SO(2,3),

• Γ = GZ[α] = G∩ SL
(
5,Z[α]

)
.

Then Γ is a cocompact lattice in G.

Idea of proof.
• σ(a+ bα) = a− bα (Galois auto of Q(α)),
• Gσ = SO(x2

1 + x2
2 +αx2

3 +αx2
4 +αx2

5) 0 SO(5),

Map ω" (ω,ωσ ) embeds Z[α]↩ R⊕R.
Image is discrete. (Lattice in R2, so ≈ Z2)

So image of Γ in G×Gσ is discrete (cocpct lattice!).

Can mod out compact group Gσ .

6

More general.
• α1, . . . ,α5 algebraic integers, s.t.

◦ α1,α2 > 0 and α3,α4,α5 < 0,
◦ ∀ Galois auts of Q(α1, . . . ,α5), ασi > 0.

Then
• G = SO(α1x2

1 + · · · +α5x2
5) 0 SO(2,3),

• Γ = G∩ SL
(
5,Z[α1, . . . ,α5]

)
is a cocpct lattice in G.

Special case of Margulis Arith Thm.
This constructs all cocompact lattices in SO(2,3).

Can describe arithmetic lattices in any G,
but answer may be more complicated.

(May need quaternion algebras — or other division algebras.)
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Basic algebraic properties of cocompact lattices.

• Γ is finitely generated (in fact, finitely presented)

(because Γ ≈ π1(cpct mfld))

• Γ is linear (a group of matrices) because G is linear

• Γ is torsion free (after pass to finite-index subgroup)

(follows from preceding two [Selberg])

• Γ is residually finite (∀γ ∈ Γ , ∃γ ∉ H"Γ , Γ/H finite)

• Γ contains free subgroup (Tits Alternative)
(⇒ exponential growth) (⇒ not amenable)
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Fundamental algebraic properties.

• Γ has Kazhdan’s Property T [Kazhdan et al.]
(Γ acts on Hilbert space ⇒ fixed pt)

• Γ is almost simple [Margulis]:
N " Γ ⇒ Γ/N is finite (or N = {e})

• Conjecture [Rapinchuk]: Γ has bounded generation
i.e., product of finitely many cyclic subgroups:

∃γ1, . . . ,γr , Γ = 〈γ1〉〈γ2〉 · · · 〈γr 〉

• Conjecture [Serre]: Γ has Congruence Subgrp Prop
I.e., N " Γ ⇒ N ⊃ congruence subgroup.

Recall Γ ≈ G∩ SL(n,Z) [Marg Arith Thm].
N ⊃ Γm = {γ ∈ Γ | γ ≡ Id (mod m) }.



9

Connections with G.
• Γ is quasi-isometric to G

• Γ is Zariski dense [Borel Density Theorem]:
◦ 5∃ connected H < G, s.t. Γ ≤ H
◦ ρ:G → SL(n,C), ρ(Γ) fixes v ⇒ ρ(G) fixes v.
◦ ρ:G → SL(n,C), ρ(Γ) fixes W ⇒ ρ(G) fixes W .

• Γ is superrigid [Margulis]:
≈ ρ: Γ → SL(n,C) ⇒ ρ extends to ρ̂:G → SL(n,C)

◦ pass to finite-index subgroup of Γ ,
◦ compose with Galois auto of C,
◦ tensor several of these together.
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Consequences of superrigidity

• ρ: Γ → SL(n,C) ⇒
◦ ρ(Γ) ⊂ SL(n,algebraic numbers) (change basis)

◦ ρ(Γ) ⊂ {diagonalizable matrices}

• Margulis Arithmeticity Theorem
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Why superrigidity implies arithmeticity.

Let Γ be a lattice in SL(n,R), and assumeH is superrigid.

We wish to show Γ ⊂ SL(n,Z),
i.e., want every matrix entry to be an integer.

First, let us show they are algebraic numbers.

Suppose some γi,j is transcendental.
Then ∃ field auto ϕ of C with ϕ(γi,j) = ???

Define ϕ̃
[
a b
c d

]
=
[
ϕ(a) ϕ(b)
ϕ(c) ϕ(d)

]
.

This map ϕ̃: Γ → GL(n,C) is a group homo.

Superrigid: ϕ̃ extends to ϕ̂: SL(n,R)→ GL(n,C).

There are uncountably many different ϕ’s,
but SL(n,R) has only finitely many n-dim’l rep’ns →←
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Now know every matrix entry is an algebraic number.

Second, show matrix entries are rational.

Fact. Γ is generated by finitely many matrices.

Matrix entries of these generators
generate a finite-degree field extension of Q.

“algebraic number field”
So Γ ⊂ SL(n, F). For simplicity, assume Γ ⊂ SL(n,Q).

Third, show matrix entries have no denominators.
Actually, show denominators are bounded.
(Then finite-index subgrp has no denoms.)

Since Γ is generated by finitely many matrices,
only finitely many primes appear in denoms.

So suffices to show each prime only occurs to bdd power.
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Γ is a superrigid lattice in SL(n,R)
and every matrix entry is a rational number.

Need to show each prime only occurs to bounded power
in denoms.

This is the conclusion of p-adic superrigidity:

Thm (Margulis).
If ϕ: Γ → SL(),Qp) is a group homomrphism,
then ϕ(Γ) has compact closure.

I.e., ∃k, no matrix in ϕ(Γ) has pk in denom.

Summary of proof:

1) R-superrigidity ⇒ matrix entries “rational”

2) Qp-superrigidity ⇒ matrix entries ∈ Z


