Cocompact Lattices	• $G = \mathbb{R}^2$ (connected Lie group)
Dave Morris	• $\Gamma = \mathbb{Z}^2$ (discrete subgroup)
Dept of Math and Comp Sci University of Lethbridge Lethbridge, AB, T1K 3M4 Dave.Morris@uleth.ca http://people.uleth.ca/~dave.morris/ Conj (Valette). Γ = cocpct lattice ⇒ Γ has property RD.	$G/\Gamma = \mathbb{T}^2 \text{ is compact} \Rightarrow \Gamma \text{ is a cocpct lattice (in } G)$ $\Gamma = \pi_1(\mathbb{T}^2) = \text{fund grp of locally symmetric space.}$ Fundamental domains tessellate \mathbb{R}^2 . $\square \square \square \square \square \square$ $\Pi = \Pi = \Pi$ $\Gamma \approx \text{symmetries of tessellation of } \mathbb{R}^2 \text{ (a symmetric space)}$ $Replace \mathbb{R}^2 \text{ with interesting } G.$
³ Replace \mathbb{R}^2 with interesting G: Lie group that is conn, noncpct, linear, simple (or ss).	Thm. $G = SL(2, \mathbb{R})$ or $SO(1, n)$ or $SU(1, n)$ or $Sp(1, n)$ $\Rightarrow \Gamma$ is Gromov hyperbolic $\Rightarrow \Gamma$ has RD.
• SL (n, \mathbb{R}) : $n \times n$ real mats of det 1	(Henceforth, we assume \mathbb{R} -rank $G \ge 2$.)
• $SL(n, \mathbb{C}), SL(n, \mathbb{H})$	Thm. $G = SL(3, \mathbb{R})$ or $SL(3, \mathbb{C})$ or $SL(3, \mathbb{H})$ or $SL(3, \mathbb{O})$ $\Rightarrow \Gamma$ has RD.
• SO(<i>m</i> , <i>n</i>): isometries of $x_1^2 + x_2^2 + \dots + x_m^2$ - $x_{m+1}^2 - \dots - x_{m+n}^2$	Some small <i>G</i> 's that are open: SL(4, \mathbb{R}) and SO(2, 3) \approx Sp(4, \mathbb{R}).
• SU(<i>m</i> , <i>n</i>): isometries of $ z_1 ^2 + z_2 ^2 + \dots + z_m ^2$ - $ z_{m+1} ^2 - \dots - z_{m+n} ^2$	Thm (Margulis Arithmeticity Theorem). Γ <i>is arithmetic</i> .
	$\approx G \hookrightarrow \mathrm{SL}(n,\mathbb{R}), \ \Gamma = G \cap \mathrm{SL}(n,\mathbb{Z}).$
• Sp (m, n) : similar with \mathbb{H}	

Cocompact lattices in SO(2,3). *More general.* • $\alpha_1, \ldots, \alpha_5$ algebraic integers, s.t. *Eq.* Let and $\circ \alpha_1, \alpha_2 > 0$ $\alpha_3, \alpha_4, \alpha_5 < 0,$ • $\alpha = \sqrt{2}$. • \forall Galois auts of $\mathbb{Q}(\alpha_1, \ldots, \alpha_5)$, $\alpha_i^{\sigma} > 0$. • $G = SO(x_1^2 + x_2^2 - \alpha x_3^2 - \alpha x_4^2 - \alpha x_5^2) \cong SO(2,3),$ Then • $\Gamma = G_{\mathbb{Z}[\alpha]} = G \cap SL(5, \mathbb{Z}[\alpha]).$ • $G = \operatorname{SO}(\alpha_1 x_1^2 + \cdots + \alpha_5 x_5^2) \cong \operatorname{SO}(2,3),$ Then Γ is a cocompact lattice in *G*. • $\Gamma = G \cap SL(5, \mathbb{Z}[\alpha_1, \dots, \alpha_5])$ is a cocpct lattice in *G*. *Idea of proof.* • $\sigma(a + b\alpha) = a - b\alpha$ (Galois auto of $\mathbb{Q}(\alpha)$). Special case of Margulis Arith Thm. • $G^{\sigma} = SO(x_1^2 + x_2^2 + \alpha x_3^2 + \alpha x_4^2 + \alpha x_5^2) \cong SO(5),$ This constructs all cocompact lattices in SO(2, 3). Map $\omega \mapsto (\omega, \omega^{\sigma})$ embeds $\mathbb{Z}[\alpha] \hookrightarrow \mathbb{R} \oplus \mathbb{R}$. Can describe arithmetic lattices in any *G*, Image is discrete. (Lattice in \mathbb{R}^2 , so $\approx \mathbb{Z}^2$) but answer may be more complicated. So image of Γ in $G \times G^{\sigma}$ is discrete (cocpct lattice!). (May need quaternion algebras — or other division algebras.) Can mod out compact group G^{σ} . Basic algebraic properties of cocompact lattices. Fundamental algebraic properties. • Γ has Kazhdan's Property *T* [Kazhdan et al.] • Γ is finitely generated (in fact, finitely presented) (Γ acts on Hilbert space \Rightarrow fixed pt) (because $\Gamma \approx \pi_1$ (cpct mfld)) • Γ is almost simple [Margulis]: $N \lhd \Gamma \Rightarrow \Gamma / N$ is finite $(or N = \{e\})$ • Γ is linear (a group of matrices) because G is linear • **Conjecture** [Rapinchuk]: Γ has bounded generation i.e., product of finitely many cyclic subgroups: • Γ *is torsion free* (after pass to finite-index subgroup) $\exists \gamma_1, \ldots, \gamma_r, \ \Gamma = \langle \gamma_1 \rangle \langle \gamma_2 \rangle \cdots \langle \gamma_r \rangle$ (follows from preceding two [Selberg]) • **Conjecture** [Serre]: Γ has Congruence Subgrp Prop I.e., $N \triangleleft \Gamma \Rightarrow N \supset$ congruence subgroup. • Γ is residually finite $(\forall \gamma \in \Gamma, \exists \gamma \notin H \triangleleft \Gamma, \Gamma/H \text{ finite})$ Recall $\Gamma \approx G \cap SL(n, \mathbb{Z})$ [Marg Arith Thm]. • *Γ* contains free subgroup (Tits Alternative) $N \supset \Gamma_m = \{ \gamma \in \Gamma \mid \gamma \equiv \text{Id} \pmod{m} \}.$ $(\Rightarrow \text{exponential growth})$ $(\Rightarrow \text{not amenable})$

⁹ Connections with <i>G</i> . • Γ is quasi-isometric to <i>G</i>	¹⁰ Consequences of superrigidity
• Γ <i>is Zariski dense</i> [Borel Density Theorem]: • \nexists connected $H < G$, s.t. $\Gamma \le H$ • $\rho: G \to SL(n, \mathbb{C}), \ \rho(\Gamma)$ fixes $v \Rightarrow \rho(G)$ fixes v . • $\rho: G \to SL(n, \mathbb{C}), \ \rho(\Gamma)$ fixes $W \Rightarrow \rho(G)$ fixes W .	• $\rho: \Gamma \to SL(n, \mathbb{C}) \Rightarrow$ • $\rho(\Gamma) \subset SL(n, algebraic numbers)$ (change basis) • $\rho(\Gamma) \subset \{ \text{diagonalizable matrices} \}$ • <i>Margulis Arithmeticity Theorem</i>
• Γ <i>is superrigid</i> [Margulis]: $\approx \rho: \Gamma \to SL(n, \mathbb{C}) \Rightarrow \rho$ extends to $\hat{\rho}: G \to SL(n, \mathbb{C})$	
 pass to finite-index subgroup of Γ, compose with Galois auto of C, tensor several of these together. 	
Why superrigidity implies arithmeticity.	¹² Now know every matrix entry is an algebraic number.
Let Γ be a lattice in SL (n, \mathbb{R}) , and assume <i>H</i> is superrigid.	Second, show matrix entries are rational.
We wish to show $\Gamma \subset SL(n, \mathbb{Z})$, i.e., want every matrix entry to be an integer. <i>First</i> , let us show they are algebraic numbers. Suppose some $\gamma_{i,j}$ is transcendental. Then \exists field auto φ of \mathbb{C} with $\varphi(\gamma_{i,j}) = ???$	<i>Fact.</i> Γ is generated by finitely many matrices. Matrix entries of these generators generate a finite-degree field extension of \mathbb{Q} . "algebraic number field" So $\Gamma \subset SL(n, F)$. For simplicity, assume $\Gamma \subset SL(n, \mathbb{Q})$.
Define $\widetilde{\varphi}\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \varphi(a) & \varphi(b) \\ \varphi(c) & \varphi(d) \end{bmatrix}$. This map $\widetilde{\varphi}: \Gamma \to \operatorname{GL}(n, \mathbb{C})$ is a group homo. Superrigid: $\widetilde{\varphi}$ extends to $\widehat{\varphi}: \operatorname{SL}(n, \mathbb{R}) \to \operatorname{GL}(n, \mathbb{C})$. There are uncountably many different φ 's, but $\operatorname{SL}(n, \mathbb{R})$ has only finitely many <i>n</i> -dim'l rep'ns $\to \leftarrow$	 <i>Third,</i> show matrix entries have no denominators. Actually, show denominators are bounded. (Then finite-index subgrp has no denoms.) Since Γ is generated by finitely many matrices, only finitely many primes appear in denoms. So suffices to show each prime only occurs to bdd power.

Γ is a superrigid lattice in $SL(n, \mathbb{R})$ and every matrix entry is a rational number.

Need to show each prime only occurs to bounded power in denoms.

13

This is the conclusion of *p*-adic superrigidity:

Thm (Margulis).

If $\varphi: \Gamma \to SL(\ell, \mathbb{Q}_p)$ is a group homomrphism, then $\varphi(\Gamma)$ has compact closure.

I.e., $\exists k$, no matrix in $\varphi(\Gamma)$ has p^k in denom.

Summary of proof:

1) \mathbb{R} -superrigidity \Rightarrow matrix entries "rational"

2) \mathbb{Q}_p -superrigidity \Rightarrow matrix entries $\in \mathbb{Z}$