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Transformation groups
Given: group Γ , (connected) manifold M .
¿ What are the actions of Γ on M ?

I.e.: ¿ What are homos φ : Γ → Homeo+(M) ?

Question
¿ ∃ (faithful) action ?

Simplest case
dimM = 1, so M = S1 or R.

Assume M = R.

Example
Z acts on R. (Tn(x) = x+n !⇒ Tm+n = Tm ◦Tn)
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Question
¿ ∃ (faithful) action of Γ on R ?

Today: Γ is an arithmetic group

Example
SL(2,Z) does not act on R.

Proof.
[
−1 0
0 −1

]2
= I. So SL(2,Z) has elt’s of finite order.

But Homeo+(R) has no elt’s of finite order:
ϕ(0) > 0 !⇒ ϕ2(0) >ϕ(0) > 0 !⇒ ϕ3(0) > 0

!⇒ . . . !⇒ ϕn(0) > 0.
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Example: SL(2,Z) does not act on R
because it has elements of finite order.

Example
Γ ' SL(2,Z) finite-index subgrp can be a free group.

Has many actions on R.

Fact
There exist other examples that act on R.
But all are “small”. (I think all known are in SO(1, n)).

Conjecture
Large arithmetic groups (R-rank > 1) cannot act on R.
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Question
¿ ∃ (nontrivial) action of Γ on R ?

Assume Γ is a “large” arithmetic group:
Γ ' SL(3,Z) = { 3× 3 integer matrices of det 1 }

(subgroup of finite index)
Or Γ ' SL

(
2,Z[

√
3]
)

or . . .
Or Γ ' SL

(
2,Z[α]

)
α = real, irrat alg’ic integer.

But Γ ≠ SL(2,Z), other “small" grps. (Need rankR Γ > 1.)

Conjecture
Γ does not act on R.
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Theorem (Witte, Lifschitz-Morris)
Γ no action on R if Γ ' SL(3,Z) or SL

(
2,Z[α]

)

Proof combines bdd generation and bdd orbits.

Unipotent subgroups: U =
[

1 ∗
0 1

]
, V =

[
1 0
∗ 1

]
.

Theorem (Carter-Keller-Paige, Lifschitz-Morris)
U and V boundedly generate Γ (up to finite index).
Γ acts on R !⇒ U -orbits (and V -orbits) are bdd.
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Bounded generation by unip subgrps

Note: Invertible matrix # Id by row operations.

Key fact: g ∈ SL
(
2,Z)# Id by integer (Z) row ops.

Example
[

13 31
5 12

]
#

[
3 7
5 12

]
#

[
3 7
2 5

]

#

[
1 2
2 5

]
#

[
1 2
0 1

]
#

[
1 0
0 1

]
.

But # steps is not bounded:
U and V do not boundedly generate SL

(
2,Z).
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Key fact: g ∈ SL
(
2,Z)# Id by integer (Z) row ops,

but # steps is not bounded.

Remark: In SL(3,Z), # steps is bounded [Carter-Keller].

Theorem (Liehl, Carter-Keller-Paige)
For Z[α] row operations, # steps is bounded.

∃n, ∀g ∈ SL
(
2,Z[α]

)
, g = u1v1u2v2· · ·unvn.

I.e., U and V boundedly gen Γ = SL
(
2,Z[α]

)
.

So SL
(
2,Z[α]

)
= UVUV · · ·UV .
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Theorem (Liehl)
SL
(
2,Z[1/p]

)
bddly gen’d by elem mats.

I.e., T # Id by Z[1/p] col ops, # steps is bdd.

Easy proof
Assume Artin’s Conjecture:
∀r ≠ ±1, perfect square,

∃ ∞ primes q, s.t. r is primitive root modulo q:
{ r , r 2, r 3, . . . } mod q = {1,2,3, . . . , q− 1}

Assume ∃q in every arith progression {a+ kb}.

∃ q = a+ kb, p is a primitive root modulo q.
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Theorem (Liehl)
SL
(
2,Z[1/p]

)
bddly gen’d by elem mats.

I.e., T # Id by Z[1/p] col ops, # steps is bdd.

Proof.[
a b
c d

]
q = a+ kb prime, p is prim root

#

[
q b
∗ ∗

]
p$ ≡ b (mod q); p$ = b + k′q

#

[
q p$
∗ ∗

]
p$ unit: can add anything to q

#

[
1 p$
∗ ∗

]
#

[
1 0
∗ 1

]
#

[
1 0
0 1

]
.
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Bdd generation: Γ = UVUV · · ·UV .
Bdd orbits: U -orbits and V -orbits are bounded.

Corollary
φ : Γ → Homeo+(R)

⇒ every Γ -orbit on R is bounded
⇒ Γ has a fixed point.

Corollary
Γ cannot act on R.
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Corollary
Γ cannot act on R.

Proof.
Suppose there is a nontrivial action.

It has fixed points:

Remove them:

Take a connected component:

Γ acts on open interval (≈ R) with no fixed point.
→←
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Bounded orbits

Theorem (Lifschitz-Morris)
Γ = SL

(
2,Z[1/p]

)
acts on R ⇒ every U -orbit bdd.

u =
[

1 u
0 1

]
, v =

[
1 0
v 1

]
, p =

[
p 0
0 1/p

]

Assume U -orbit and V -orbit of x not bdd above.
Assume p fixes x. (p does have fixed pts, so not an issue.)

Wolog u(x) < v(x).
Then pn

(
u(x)

)
< pn

(
v(x)

)
.

LHS = pn
(
u(x)

)
= (pnup−n)(x)→∞(x)→∞.

RHS = pn
(
v(x)

)
= (pnvp−n)(x)→ 0(x) <∞.

→←
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Other arithmetic groups of higher rank

Proposition
Suppose Γ1 ⊂ Γ2.

If Γ2 acts on R, then Γ1 acts on R.
If Γ1 does not act on R, then Γ2 does not act on R.

Our methods require Γ to have a unipotent subgrp.
Such arithmetic groups are called noncocompact.

Theorem (Chernousov-Lifschitz-Morris)
Spse Γ is a noncocompact arith group of higher rank.
Then Γ

.⊃ SL
(
2,Z[α]

)

or noncocpct arith grp in SL(3,R) or SL(3,C).
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Open Problem
Show noncocpct arith grps in SL(3,R) and SL(3,C)

cannot act on R.

Conjecture (Rapinchuk, ∼1990)
These arith grps are boundedly generated by unips.

Rapinchuk Conjecture implies no action on R
if Γ noncocompact of higher rank.

Cocompact case will require new ideas.
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