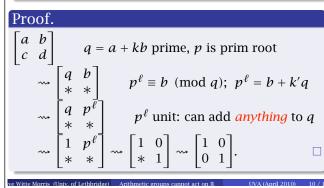


Q	uestion
į	\exists (faithful) action of Γ on \mathbb{R} ?
To	о day: Г is an <i>arithmetic group</i>
Ex	xample
-	$L(2,\mathbb{Z})$ does <i>not</i> act on \mathbb{R} .
Pı	roof.
	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}^2 = I$. So SL(2, \mathbb{Z}) has elt's of finite order
Bu	at Homeo ₊ (\mathbb{R}) has no elt's of finite order: $\varphi(0) > 0 \implies \varphi^2(0) > \varphi(0) > 0 \implies \varphi^3(0) >$ $\implies \dots \implies \varphi^n(0) > 0.$
ve Wit	tte Morris (Univ. of Lethbridge) Arithmetic groups cannot act on R UVA (April 2010)
T	heorem (Witte, Lifschitz-Morris)
	no action on \mathbb{R} if $\Gamma \doteq SL(3, \mathbb{Z})$ or $SL(2, \mathbb{Z}[\alpha])$
-	
Pr	boof combines bdd generation and bdd orbits. Unipotent subgroups: $\overline{U} = \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}, \underline{V} = \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix}.$
T	heorem (Carter-Keller-Paige, Lifschitz-Morris)
	• \overline{U} and \underline{V} boundedly generate Γ (up to finite index) • Γ acts on $\mathbb{R} \implies \overline{U}$ -orbits (and \underline{V} -orbits) are bdd.
10.115	tte Morris (Univ. of Lethbridge) Arithmetic groups cannot act on R UVA (April 2010)
	ACCOUNT COMPACT AND ACCOUNT CALL OF A CADIL 2010
T	heorem (Liehl)
	$(2,\mathbb{Z}[1/p])$ bddly gen'd by elem mats.
I.e	<i>e.</i> , $T \rightsquigarrow \text{Id } by \mathbb{Z}[1/p]$ col ops, # steps is bdd.
Ea	asy proof
	ssume Artin's Conjecture:
	$r \neq \pm 1$, perfect square,
	$\exists \infty \text{ primes } q, \text{ s.t. } r \text{ is primitive root modulo } q \\ \{r, r^2, r^3, \dots\} \text{ mod } q = \{1, 2, 3, \dots, q - 1\}$
A	ssume $\exists q$ in every arith progression $\{a + kb\}$.
-	
Ε	q = a + kb, <u>p</u> is a primitive root modulo q.

Theorem (Liehl)

 $SL(2, \mathbb{Z}[1/p])$ bddly gen'd by elem mats. *I.e.*, $T \rightsquigarrow \text{Id } by \mathbb{Z}[1/p]$ col ops, # steps is bdd.



Bounded orbits

Theorem (Lifschitz-Morris)

 $\Gamma = SL(2, \mathbb{Z}[1/p])$ acts on $\mathbb{R} \Rightarrow$ every \overline{U} -orbit bdd.

$$\overline{u} = \begin{bmatrix} 1 & u \\ 0 & 1 \end{bmatrix}, \ \underline{v} = \begin{bmatrix} 1 & 0 \\ v & 1 \end{bmatrix}, \ \mathbf{p} = \begin{bmatrix} p & 0 \\ 0 & 1/p \end{bmatrix}$$

Assume \overline{U} -orbit and *V*-orbit of *x* not bdd above. Assume p fixes x. (p does have fixed pts, so not an issue.)

• Wolog $\overline{u}(x) < v(x)$.

• Then
$$\mathcal{P}^n(\overline{u}(x)) < \mathcal{P}^n(\underline{v}(x))$$
.

• LHS =
$$p^n(\overline{u}(x)) = (p^n \overline{u} p^{-n})(x) \to \overline{\infty}(x) \to \infty$$
.

• RHS =
$$p^n(\underline{v}(x)) = (p^n \underline{v} p^{-n})(x) \to \underline{v}(x) < \infty$$
.

V. Chernousov, L. Lifschitz, and D. W. Morris: Almost-minimal nonuniform lattices of higher rank, Michigan Mathematical Journal 56, no. 2, (2008), 453D478. http://arxiv.org/abs/0705.4330

L. Lifschitz and D. W. Morris: Bounded generation and lattices that cannot act on the line, Pure and Applied Mathematics Quarterly 4 (2008), no. 1, part 2, 99-126. http://arxiv.org/abs/math/0604612

D. W. Morris: Bounded generation of SL(n, A) (after D. Carter, G. Keller and E. Paige), New York Journal of Mathematics 13 (2007) 383-421. http://nyjm.albany.edu/j/2007/13-17.html

A. Ondrus: Minimal anisotropic groups of higher real rank. (preprint, 2009, University of Alberta).

D. Witte:

Arithmetic groups of higher Q-rank cannot act on 1-manifolds, Proc. Amer. Math. Soc. 122 (1994) 333-340.

• Bdd generation: $\Gamma = \overline{U} \underline{V} \overline{U} \underline{V} \cdots \overline{U} \underline{V}$. • Bdd orbits: \overline{U} -orbits and V-orbits are bounded.

Corollary

 $\phi: \Gamma \to \operatorname{Homeo}_+(\mathbb{R})$

- \Rightarrow every Γ -orbit on \mathbb{R} is bounded
- \Rightarrow Γ has a fixed point.

Corollary

 Γ cannot act on \mathbb{R} .

Other arithmetic groups of higher rank

Proposition

Suppose $\Gamma_1 \subset \Gamma_2$.

- If Γ_2 acts on \mathbb{R} , then Γ_1 acts on \mathbb{R} .
- If Γ_1 does not act on \mathbb{R} , then Γ_2 does not act on \mathbb{R} .

Our methods require Γ to have a unipotent subgrp. Such arithmetic groups are called *noncocompact*.

Theorem (Chernousov-Lifschitz-Morris)

Spse Γ is a noncocompact arith group of higher rank. Then $\Gamma \supset SL(2, \mathbb{Z}[\alpha])$

or noncocpct arith grp in $SL(3, \mathbb{R})$ *or* $SL(3, \mathbb{C})$.

Expository article:

D. W. Morris: Can lattices in $SL(n, \mathbb{R})$ act on the circle? (preprint, 2008, http://arxiv.org/abs/0811.0051)

Proof. Suppose there is a nontrivial action. It has fixed points: Remove them: Take a connected component: Γ acts on open interval ($\approx \mathbb{R}$) with no fixed point. **Open Problem** *Show noncocpct arith grps in* $SL(3, \mathbb{R})$ *and* $SL(3, \mathbb{C})$ *cannot act on* \mathbb{R} *.* Conjecture (Rapinchuk, ~1990) *These arith grps are boundedly generated by unips.*

Corollary

 Γ cannot act on \mathbb{R} .

Rapinchuk Conjecture implies no action on R if Γ noncocompact of higher rank.

Cocompact case will require new ideas.