Transitive permutation groups of prime-squared degree

Dave Witte

Department of Mathematics Oklahoma State University Stillwater, OK 74078

dwitte@math.okstate.edu

Main author:

Edward Dobson

Department of Mathematics and Statistics Mississippi State University Mississippi State, MS 39762 dobson@math.msstate.edu Thm (Burnside). Let

• G be a transitive perm grp of degree p; and

• P be a Sylow p-subgroup of G.

Then either

- 1) $P \triangleleft G$; or
- 2) G is doubly transitive.

This leads a complete classification of permutation groups of degree p.

1) $|G|_p = p \implies P \sim \text{regular rep of } \mathbb{Z}_p,$ so $G \hookrightarrow N_{S_p}(\mathbb{Z}_p) = \text{Aff}(1, p) \cong \mathbb{Z}_p^* \ltimes \mathbb{Z}_p.$ Choice of $G \iff \text{divisor } d \text{ of } p - 1$ |Aff(1, p) : G| = d.

2) Classification of Finite Simple Groups,
⇒ all doubly transitive groups are known.
Want to do the same for groups of degree p².

Thm. Let

- $H \leq S_p$ doubly transitive;
- S be a min'l normal subgroup of H; and
- $N = N_{S_p}(S).$

Then S is simple, $S \leq H \leq N$, N/S is cyclic, and, after replacing H by a conjugate, either:

- $S = \mathbb{Z}_p$, N = A(1, p), and $N/S \cong \mathbb{Z}_{p-1}$; or
- $S = A_p$, $N = S_p$, and $N/S \cong \mathbb{Z}_2$; or
- p = 11 and S = H = N = PSL(2, 11); or
- p = 11 and $S = H = N = M_{11}$; or
- p = 23 and $S = H = N = M_{23}$; or
- $p = \frac{q^d 1}{q 1}$ for some $q = r^m$ and d, and $S = \text{PSL}(d, q), N = \text{P}\Gamma L(d, q), N/S \cong \mathbb{Z}_m.$

Conj. $\exists \infty \text{ primes of the form } (q^d - 1)/(q - 1).$ E.g. any Mersenne prime $p = 2^d - 1.$ **Thm** (Wielandt). Let $G \leq S_{p^2}$ transitive. Then 1) $P \triangleleft G$; or

- 2) G is doubly transitive; or
- (3) G is imprimitive; or
- 4) G has an imprimitive subgroup of index 2, and $P \cong \mathbb{Z}_p \times \mathbb{Z}_p$, for any $P \in \text{Syl}_p(G)$.

Defn. Let G act transitively on Ω.
B ⊂ Ω is a block if 1 < |B| < |Ω| and ∀g ∈ G, either Bg = B or Bg ∩ B = Ø. I.e., B = { Bg | g ∈ G } partitions Ω.
G is imprimitive if ∃ block B.

- 2) Use the classification of dbly transitive grps. a) $\mathbb{Z}_p^2 < H \leq \operatorname{Aff}(2, p)$
 - b) A_{p^2}, S_{p^2}
 - c) $PSL(d,q) \le H \le P\Gamma L(d,q)$

a) C. Hering [Huppert III, Rmk. XII.7.5, p. 386]

Analogue of Burnside's Theorem.

Main Thm. $G \leq S_{p^2}$ transitive, $P \in Syl_p(G) \Rightarrow$

1)
$$P \triangleleft G$$
; or
2) G is doubly transitive; or
3) $\exp(P) = p$ and $|P| \in \{p^2, p^p\}$; or
4) $|P| = p^{p+1}$.

Prop. $G \leq S_{p^2}$ imprim, P elem abel of order p^2 $\Rightarrow G$ is equivalent to a subgroup of $S_p \times S_p$.

Defn. Let $H, L \leq S_p$. Then $H \wr L = H \ltimes L^p \hookrightarrow S_{p^2},$ where $(l_1, \ldots, l_p)^h = (l_{1^{h^{-1}}}, \ldots, l_{p^{h^{-1}}}).$ $H \wr L$ acts faithfully on $\mathbb{Z}_p \times \mathbb{Z}_p$ by $(i, j)^h = (i^h, j)$ $(i, j)^{(l_1, \ldots, l_p)} = (i, j^{l_i})$

 $\{i\} \times \mathbb{Z}_p$ is a block, so $H \wr L$ is imprimitive. Note that $e \wr L$ fixes each block.

Exer. Any imprimitive subgroup of S_{p^2} is equivalent to a subgroup of $S_p \wr S_p$.

Exer. $\mathbb{Z}_p \wr \mathbb{Z}_p$ is a Sylow *p*-subgrp of $S_{\mathbb{Z}_p \times \mathbb{Z}_p} \cong S_{p^2}$. For $0 \leq i \leq p, \exists ! K_i \leq e_p \wr \mathbb{Z}_p \cong (\mathbb{Z}_p)^p$, s.t. $K_i \triangleleft \mathbb{Z}_p \wr \mathbb{Z}_p$ and $|K_i| = p^i$. E.g., $K_p = e_p \wr \mathbb{Z}_p$ and $K_{i-1} = [\mathbb{Z}_p \wr \mathbb{Z}_p, K_i]$. Exer. If $P \leq \mathbb{Z}_p \wr \mathbb{Z}_p$, $P \not\leq K_p$, and $|P| = p^i$, then $P \cap K_p = K_{i-1}$. Fact. $\mathbb{Z}_p \ltimes K_{p-1}$ is the unique transitive subgroup of $\mathbb{Z}_p \wr \mathbb{Z}_p$ with exponent p and order p^p .

 $K_{p-1} = \{(z_1, \ldots, z_p) \in (\mathbb{Z}_p)^p \mid \sum_{i=1}^p z_i = 0\}.$ Fact. For $0 \le i < p$, $N_{e \wr S_p}(K_i) = \mathbb{Z}_p^* \cdot K_p.$ **Prop.** $G \le S_{p^2}$ imprim, $P = \mathbb{Z}_p \ltimes K_{p-1} \Rightarrow$ $\exists H \le S_p \times \mathbb{Z}_p^*$, s.t. G is equiv to $H \cdot K_{p-1}.$

Eq. Let
$$H, L \leq S_p$$
 transitive.
 $G = H \wr L \leq S_{p^2}$ is imprim, and $|G|_p = p^{p+1}$

Prop. $G \leq S_{p^2}$ imprim, $|G|_p = p^{p+1}$. \exists 1) $H, L \leq S_p$ transitive, such that L is simple; 2) $K/L^p \leq \left(N_{S_p}(L)/L\right)^p$ H-invariant; 3) $\phi: H \to N_{S_p}(L)^p/K$ crossed homomorphism; such that G is equivalent to $\{(h, v) \in H \ltimes N_{S_p}(L)^p \mid \phi(h) = vK\}$ $\subset S_p \wr S_p.$ Remaining problems.

For $PSL(d,q) \leq H \leq P\Gamma L(d,q)$: 1) Find *H*-invariant subgroups *K* of $(\mathbb{Z}_{r^k})^p$ (where $q = r^m$). (k = 1 done [Bardoe-Sin]) 2) For each subgrp *K*, calculate $H^1(H, (\mathbb{Z}_{r^k})^p/K)$ and find an explicit rep of each coho class.

For $H = PSL(2, 11), M_{11}, M_{23}$: Problem 2.

Main Thm. Let $G \leq S_{p^2}$, $P \in \operatorname{Syl}_p(G)$. Then either $P \triangleleft G$, or G is doubly transitive, or $|P| = p^{p+1}$, or $\exp(P) = p$ and $|P| \in \{p^2, p^p\}$.

Proof. Assume G is not dbly trans, $|P| \neq p^{p+1}$, and either $\exp(P) = p^2$ or $|P| \notin \{p^2, p^p\}$.

 $P \not\cong \mathbb{Z}_p \times \mathbb{Z}_p$, so Wielandt's Thm $\Rightarrow G$ imprim. Let \mathcal{B} be a block system for G.

Defn. Fix_G(\mathcal{B}) = { $g \in G \mid \forall B \in \mathcal{B}, Bg = B$ }. Strategy: show Fix_G(\mathcal{B}) and G/\mathcal{B} are solvable. **Lem.** G solvable, imprimitive, $|P| \neq p^{p+1}$ $\Rightarrow P \triangleleft G$. **Lem.** G solvable, imprimitive, $|P| \neq p^{p+1}$ $\Rightarrow P \triangleleft G$.

Proof. We always assume $P \leq \mathbb{Z}_p \wr \mathbb{Z}_p$. We have $\operatorname{Fix}_P(\mathcal{B}) = K_p \cap P = K_i$ for some *i*. $\operatorname{Fix}_{G}(\mathcal{B})$ solvable $\Rightarrow G \leq N_{S_{n} \wr S_{n}}(K_{i}).$ Because $N_{S_p \wr S_p}(K_i)$ normalizes $|| K_i|_B = K_p$, then $G \leq N_{S_n \wr S_n}(K_p) = S_p \wr \operatorname{Aff}(1, p).$ G/\mathcal{B} solvable $\Rightarrow G \leq \operatorname{Aff}(1,p) \wr \operatorname{Aff}(1,p)$. Because $p^1 < |P| < p^{p+1}$, we have 0 < i < p, so $N_{e \wr S_n}(K_i) = \mathbb{Z}_n^* \cdot K_p$. Therefore $G \leq (\operatorname{Aff}(1, p) \times \mathbb{Z}_p^*) \cdot K_p$.

This has a unique Sylow p-subgroup.

Lem. If $|P| \neq p^{p+1}$ and $P \not\cong \mathbb{Z}_p \times \mathbb{Z}_p$, then $\operatorname{Fix}_G(\mathcal{B})$ is solvable.

Proof. Let $N \leq \operatorname{Fix}_G(\mathcal{B})$ minimal normal in G. Suppose N is not a p-group, so $N = L_1 \times \cdots \times L_m$ is a direct product of nonabelian simple groups.

Defn. supp
$$(L_i) = \{ B \in \mathcal{B} \mid L_i \mid_B \neq e \}.$$

 $[L_i, L_j] = e \qquad \Rightarrow \operatorname{supp}(L_i) \cap \operatorname{supp}(L_j) = \emptyset.$

G-action on \mathcal{B} is primitive

$$\Rightarrow |\operatorname{supp}(L_i)| \in \{1, p\};$$
$$\Rightarrow m \in \{1, p\}.$$

 $m = p \Rightarrow (\mathbb{Z}_p)^p \hookrightarrow N \cap P$, so $|G|_p = p^{p+1}$. $\rightarrow \leftarrow$

$$m = 1 \Rightarrow \operatorname{Fix}_{G}(\mathcal{B}) \subset N_{e \wr S_{p}}(L_{1}) \cong N_{S_{B}}(L_{1}|_{B})$$

(because $C_{S_{B'}}(L_{1}|_{B'}) = e$)
so $|\operatorname{Fix}_{G}(\mathcal{B})|_{p} = p$. Therefore $|P| = p^{2}$.
We now know $P \cong \mathbb{Z}_{p^{2}}$ (and $m = 1$).

Suppose P is cyclic ($\cong \mathbb{Z}_{p^2}$), and m = 1.

Let g be any p'-element of $N_{L_1}(P^p)$.

Because $P^p = K_1$, we know that $g \in \mathbb{Z}_p^* K_p$, so g normalizes $\mathbb{Z}_p \wr \mathbb{Z}_p$.

Therefore, [P, g] is a *p*-subgroup of $\operatorname{Fix}_G(\mathcal{B})$.

Each of P and g normalizes P^p , and P^p is a Sylow p-subgroup of $\operatorname{Fix}_G(\mathcal{B})$, so $[P,g] \subset P^p$.

Therefore g normalizes P, and centralizes P/P^p . Because g is a p'-element, then g centralizes P.

Thus, P^p is in the center of its normalizer in L_1 , so L_1 has a normal *p*-complement.

Because L_1 is simple, this is nonsense. $\rightarrow \leftarrow$

Lem. Assume

- $\operatorname{Fix}_G(\mathcal{B})$ is solvable; and
- G/\mathcal{B} is not solvable.

Then $|P| \in \{p^2, p^p, p^{p+1}\}.$

Proof. Let $K \in \operatorname{Syl}_p(\operatorname{Fix}_G(\mathcal{B}))$, so $K \triangleleft G$. Then $G \leq N_{S_p \wr S_p}(K)$, and $K_p \triangleleft N_{S_p \wr S_p}(K)$, so $G \leq N_{S_p \wr S_p}(K_p) = S_p \wr \operatorname{Aff}(1, p)$.

Because K is invariant under $\mathbb{Z}_p \wr e$, and the \mathbb{Z}_p -invariant subgroup of order p^i is unique, we know that K is normalized by $\operatorname{Aff}(1,p) \wr e$.

From the list of doubly transitive groups, we see that Aff(1, p) is maximal in S_p .

Therefore $N_{S_p \wr \operatorname{Aff}(1,p)}(K) / \mathcal{B} = S_{\mathcal{B}}$.

Then the following result of modular representation theory implies that $|K| \in \{1, p, p^{p-1}, p^p\}$. **Prop.** Let $\chi: S_{p-1} \to \mathbb{Z}_p^*$ be a homomorphism. Nontrivial invariant subspaces of $\operatorname{Ind}_{S_{p-1}}^{S_p} \chi$ have either dimension 1 or codimension 1.

More generally, coding theorists have calculated the automorphism group of any code admitting $\operatorname{Aff}(d,q)$. Lem. Assume

Fix_G(B) has a unique Sylow p-subgroup Q;
exp(P) = p²; and
|P| ≠ p^{p+1}
Then P ⊲ G.

Proof. We have

$$\frac{G}{Q} \hookrightarrow \frac{(S_p \times \mathbb{Z}_p^*) \ltimes (\mathbb{Z}_p)^p}{K_{p-1}} \cong S_p \times \operatorname{Aff}(1, p)$$
Let $\phi: G/Q \to \operatorname{Aff}(1, p)$ (the projection).
WMA ϕ not faithful; else G/\mathcal{B} solvable, so done.
 G/\mathcal{B} primitive $\Rightarrow \ker \phi$ transitive $\Rightarrow |\ker \phi|_p = p$;
therefore, the image of ϕ is a p' -group.
Therefore, every p -element of G is in the kerne

of ϕ , so $P \subset \mathbb{Z}_p \ltimes K_{p-1}$.

So every element of P has order p.

• M. Bardoe and P. Sin, The permutation modules for $\operatorname{GL}(n+1,\mathbb{F}_q)$ acting on $\mathbb{P}^n(\mathbb{F}_q)$ and \mathbb{F}_q^{n+1} , London Math. Soc. (to appear).

• P.J. Cameron, Finite Permutation groups and finite simple groups, *Bull. London Math. Soc.* **13** 1981, 1-22.

• W. Feit, Some consequences of the classification of finite simple groups, *Proc. Symp. Pure Math.* 37 (1980) 175–181. B. Cooperstein and G. Mason, eds, *The Santa Cruz Conference on Finite Groups*, Amer. Math. Soc., 1980.

• W. C. Huffman, Codes and Groups, in V.S. Pless and W.C. Huffman, eds., *Handbook of Coding Theory*, vol. 2, Elsevier, 1998, pp. 1345–1440.

• A. S. Kleshchev and A. A. Premet, On second degree cohomology of symmetric and alternating groups, *Comm. Alg.* 21(2) (1993) 583–600.

• B. Mortimer, The modular permutation representations of the known doubly transitive groups, *Proc. London Math. Soc.* (3) 41 (1980) 1–20.

• H. Wielandt, *Finite Permutation Groups*, Academic Press, New York, 1964.

• H. Wielandt, Permutation groups through invariant relations and invariant functions, in: B. Huppert and H. Schneider, eds., *Mathematische Werke = Mathematical Works / Helmut Wielandt*, vol. 1, de Gruyter, Berlin, 1994, pp. 237–296. QA3.W520.1994.V1 [Thm. 16.2, 16.3]