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Thm (Burnside). Let
• G be a transitive perm grp of degree p; and
• P be a Sylow p-subgroup of G.

Then either
1) P � G; or
2) G is doubly transitive.

This leads a complete classification of permutation
groups of degree p.

1) |G|p = p ⇒ P ∼ regular rep of Zp,
so G ↪→ NSp(Zp) = Aff(1, p) ∼= Z

∗
p � Zp.

Choice of G ↔ divisor d of p− 1
|Aff(1, p) : G| = d.

2) Classification of Finite Simple Groups,
⇒ all doubly transitive groups are known.

Want to do the same for groups of degree p2.
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Thm. Let
• H ≤ Sp doubly transitive;
• S be a min’l normal subgroup of H; and
• N = NSp

(S).
Then S is simple, S ≤ H ≤ N , N/S is cyclic,
and, after replacing H by a conjugate, either:
• S = Zp, N = A(1, p), and N/S ∼= Zp−1; or
• S = Ap, N = Sp, and N/S ∼= Z2; or
• p = 11 and S = H = N = PSL(2, 11); or
• p = 11 and S = H = N = M11; or
• p = 23 and S = H = N = M23; or

• p =
qd − 1
q − 1

for some q = rm and d, and

S = PSL(d, q), N = PΓL(d, q), N/S ∼= Zm.

Conj. ∃ ∞ primes of the form (qd − 1)/(q − 1).
E.g. any Mersenne prime p = 2d − 1.
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Thm (Wielandt). Let G ≤ Sp2 transitive. Then
1) P � G; or
2) G is doubly transitive; or
3) G is imprimitive; or
4) G has an imprimitive subgroup of index 2,

and P ∼= Zp × Zp, for any P ∈ Sylp(G).

Defn. Let G act transitively on Ω.
• B ⊂ Ω is a block if 1 < |B| < |Ω| and

∀g ∈ G, either Bg = B or Bg ∩B = ∅.
I.e., B = {Bg | g ∈ G } partitions Ω.

• G is imprimitive if ∃ block B.

2) Use the classification of dbly transitive grps.
a) Z

2
p < H ≤ Aff(2, p)

b) Ap2 , Sp2

c) PSL(d, q) ≤ H ≤ PΓL(d, q)

a) C. Hering [Huppert III, Rmk. XII.7.5, p. 386]
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Analogue of Burnside’s Theorem.

Main Thm. G ≤ Sp2 transitive, P ∈ Sylp(G) ⇒
1) P � G; or
2) G is doubly transitive; or
3) exp(P ) = p and |P | ∈ {p2, pp}; or
4) |P | = pp+1.

Prop. G ≤ Sp2 imprim, P elem abel of order p2

⇒ G is equivalent to a subgroup of Sp × Sp.
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Defn. Let H,L ≤ Sp. Then
H � L = H � Lp ↪→ Sp2 ,

where (l1, . . . , lp)h = (l1h−1 , . . . , lph−1 ).

H � L acts faithfully on Zp × Zp by
(i, j)h = (ih, j)
(i, j)(l1,...,lp) = (i, jli)

{i} × Zp is a block, so H � L is imprimitive.
Note that e � L fixes each block.

Exer. Any imprimitive subgroup of Sp2 is equiva-
lent to a subgroup of Sp � Sp.

Exer. Zp �Zp is a Sylow p-subgrp of SZp×Zp
∼= Sp2 .

For 0 ≤ i ≤ p, ∃! Ki ≤ ep � Zp
∼= (Zp)p, s.t.

Ki � Zp � Zp and |Ki| = pi.
E.g., Kp = ep � Zp and Ki−1 = [Zp � Zp,Ki].

Exer. If P ≤ Zp � Zp, P �≤ Kp, and |P | = pi,
then P ∩Kp = Ki−1.
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Fact. Zp �Kp−1 is the unique transitive subgroup
of Zp � Zp with exponent p and order pp.

Kp−1 = {(z1, . . . , zp) ∈ (Zp)p |
∑p

i=1 zi = 0 }.

Fact. For 0 ≤ i < p, Ne�Sp(Ki) = Z
∗
p ·Kp.

Prop. G ≤ Sp2 imprim, P = Zp �Kp−1 ⇒
∃ H ≤ Sp × Z

∗
p, s.t. G is equiv to H ·Kp−1.

Eg. Let H,L ≤ Sp transitive.
G = H � L ≤ Sp2 is imprim, and |G|p = pp+1.

Prop. G ≤ Sp2 imprim, |G|p = pp+1. ∃
1) H,L ≤ Sp transitive, such that L is simple;
2) K/Lp ≤

(
NSp

(L)/L
)p
H-invariant;

3) φ:H → NSp(L)p/K crossed homomorphism;
such that G is equivalent to

{ (h, v) ∈ H �NSp(L)p | φ(h) = vK }
⊂ Sp � Sp.
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Remaining problems.

For PSL(d, q) ≤ H ≤ PΓL(d, q):
1) Find H-invariant subgroups K of (Zrk)p

(where q = rm). (k = 1 done [Bardoe-Sin])
2) For each subgrp K,

calculate H1
(
H, (Zrk)p/K

)
and

find an explicit rep of each coho class.

For H = PSL(2, 11), M11, M23: Problem 2.
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Main Thm. Let G ≤ Sp2 , P ∈ Sylp(G).
Then either P � G, or G is doubly transitive, or
|P | = pp+1, or exp(P ) = p and |P | ∈ {p2, pp}.

Proof. Assume G is not dbly trans, |P | �= pp+1,
and either exp(P ) = p2 or |P | /∈ {p2, pp}.

P �∼= Zp × Zp, so Wielandt’s Thm ⇒ G imprim.

Let B be a block system for G.

Defn. FixG(B) = { g ∈ G | ∀B ∈ B, Bg = B }.

Strategy: show FixG(B) and G/B are solvable.

Lem. G solvable, imprimitive, |P | �= pp+1

⇒ P � G.
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Lem. G solvable, imprimitive, |P | �= pp+1

⇒ P � G.

Proof. We always assume P ≤ Zp � Zp.

We have FixP (B) = Kp ∩ P = Ki for some i.

FixG(B) solvable ⇒ G ≤ NSp�Sp(Ki).

Because NSp�Sp
(Ki) normalizes

∏

B∈B
Ki|B = Kp,

then G ≤ NSp�Sp
(Kp) = Sp �Aff(1, p).

G/B solvable ⇒ G ≤ Aff(1, p) �Aff(1, p).

Because p1 < |P | < pp+1, we have 0 < i < p,
so Ne�Sp(Ki) = Z

∗
p ·Kp.

Therefore G ≤
(
Aff(1, p)× Z

∗
p

)
·Kp.

This has a unique Sylow p-subgroup.
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Lem. If |P | �= pp+1 and P �∼= Zp × Zp,
then FixG(B) is solvable.

Proof. Let N ≤ FixG(B) minimal normal in G.
Suppose N is not a p-group, so N = L1×· · ·×Lm

is a direct product of nonabelian simple groups.

Defn. supp(Li) = {B ∈ B | Li|B �= e }.

[Li, Lj ] = e ⇒ supp(Li) ∩ supp(Lj) = ∅.

G-action on B is primitive
⇒ | supp(Li)| ∈ {1, p};
⇒ m ∈ {1, p}.

m = p ⇒ (Zp)p ↪→ N ∩ P , so |G|p = pp+1. →←

m = 1 ⇒ FixG(B) ⊂ Ne�Sp(L1) ∼= NSB
(L1|B)

(because CSB′ (L1|B′) = e)
so |FixG(B)|p = p. Therefore |P | = p2.

We now know P ∼= Zp2 (and m = 1).
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Suppose P is cyclic (∼= Zp2), and m = 1.

Let g be any p′-element of NL1(P
p).

Because P p = K1, we know that g ∈ Z
∗
pKp,

so g normalizes Zp � Zp.

Therefore, [P, g] is a p-subgroup of FixG(B).

Each of P and g normalizes P p,
and P p is a Sylow p-subgroup of FixG(B),
so [P, g] ⊂ P p.

Therefore g normalizes P , and centralizes P/P p.
Because g is a p′-element, then g centralizes P .

Thus, P p is in the center of its normalizer in L1,
so L1 has a normal p-complement.

Because L1 is simple, this is nonsense. →←
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Lem. Assume
• FixG(B) is solvable; and
• G/B is not solvable.

Then |P | ∈ {p2, pp, pp+1}.

Proof. Let K ∈ Sylp
(
FixG(B)

)
, so K � G.

Then G ≤ NSp�Sp(K), and Kp � NSp�Sp(K),
so G ≤ NSp�Sp

(Kp) = Sp �Aff(1, p).

Because K is invariant under Zp � e, and
the Zp-invariant subgroup of order pi is unique,
we know that K is normalized by Aff(1, p) � e.

From the list of doubly transitive groups,
we see that Aff(1, p) is maximal in Sp.

Therefore NSp�Aff(1,p)(K)/B = SB.

Then the following result of modular representa-
tion theory implies that |K| ∈ {1, p, pp−1, pp}.
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Prop. Let χ:Sp−1 → Z
∗
p be a homomorphism.

Nontrivial invariant subspaces of IndSp

Sp−1
χ

have either dimension 1 or codimension 1.

More generally, coding theorists have calculated
the automorphism group of any code admitting
Aff(d, q).
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Lem. Assume
• FixG(B) has a unique Sylow p-subgroup Q;
• exp(P ) = p2; and
• |P | �= pp+1

Then P � G.

Proof. We have
G

Q
↪→

(Sp × Z
∗
p) � (Zp)p

Kp−1

∼= Sp ×Aff(1, p)

Let φ:G/Q→ Aff(1, p) (the projection).

WMA φ not faithful; else G/B solvable, so done.

G/B primitive ⇒ kerφ transitive ⇒ | kerφ|p = p;
therefore, the image of φ is a p′-group.

Therefore, every p-element of G is in the kernel
of φ, so P ⊂ Zp �Kp−1.

So every element of P has order p.
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