Foliation-preserving maps between solvmanifolds

Holly Bernstein

Department of Mathematics Washington University St. Louis, MO 63130 holly@math.wustl.edu

Dave Witte

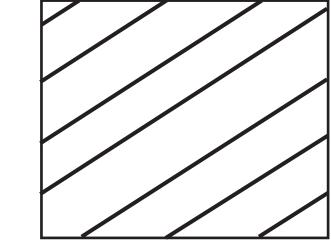
Department of Mathematics Oklahoma State University Stillwater, OK 74078 dwitte@math.okstate.edu

preprint available: http://www.math.okstate.edu/~dwitte Eq. Let V_1, V_2 be connected Lie subgroups of \mathbb{R}^n . Then V_i acts on $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$. The orbits of V_i define a foliation \mathcal{F}_i of \mathbb{T}^n .

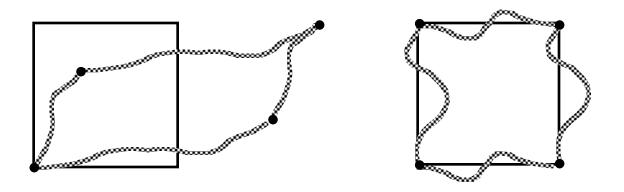
Question. When is \mathcal{F}_1 topologically equiv to \mathcal{F}_2 ? **Thm** (Folklore). $\mathcal{F}_1 \sim \mathcal{F}_2$ iff $\sigma(V_1) = V_2 \text{ for some } \sigma \in \mathrm{GL}_n(\mathbb{Z}) = \mathrm{Aut}(\mathbb{T}^n).$

Proof (D. Benardete). (\Rightarrow) Let f be a homeo of \mathbb{T}^n that maps each V_1 -orbit onto a V_2 -orbit.

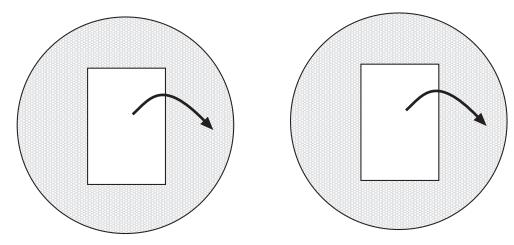
Lift f to a homeomorphism \tilde{f} of \mathbb{R}^n . Compose \tilde{f} with a translation, so $\tilde{f}(0) = 0$.



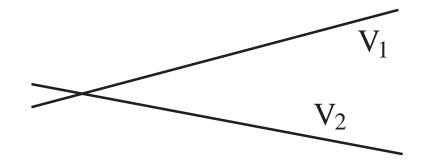
Then $\widetilde{f}|_{\mathbb{Z}^n} \in \operatorname{Aut}(\mathbb{Z}^n) = \operatorname{GL}_n(\mathbb{Z})$, so (*) $\widetilde{f}|_{\mathbb{Z}^n}$ extends to an automorphism σ of \mathbb{R}^n . Compose \widetilde{f} with σ^{-1} , so $\widetilde{f}|_{\mathbb{Z}^n} = \operatorname{Id}$.



(**) $\mathbb{R}^n/\mathbb{Z}^n$ is compact, so \tilde{f} moves points by a bounded amount, i.e., $d(s, \tilde{f}(s)) < C$ for all s.



Suppose $V_1 \neq V_2$. These are two subspaces of \mathbb{R}^n ,



so it is obvious that

(***) there are elements of V_2 that are arbitrarily far from V_1 (or vice-versa).

We know \widetilde{f} fixes 0 and maps V_1 -orbits onto V_2 orbits. Thus \widetilde{f} maps V_1 onto V_2 .

But \tilde{f} moves points by only a bounded amount, so this is impossible.

More generally:

- $G_i = \text{simply conn solvable Lie group}$
- V_i = connected Lie subgroup of G_i
- Γ_i = lattice in G_i

The orbits of V_i define a foliation \mathcal{F}_i of G_i/Γ_i .

$$\mathcal{F}_1 \sim \mathcal{F}_2$$
 if $G_1 = G_2, V_1 = V_2$, and $\Gamma_1 = \Gamma_2$
(up to isomorphism).

Benardete's argument proves the converse if:

(*) every isomorphism of Γ_1 with Γ_2 extends to an isomorphism of G_1 with G_2 ;

(**)
$$G_1/\Gamma_1$$
 is compact; and

(***) if X and Y are two connected subgroups of G_1 , and $X \not\subset Y$, then X diverges from Y.

Defn. X diverges from Y if $\not\exists$ compact set $K \subset G$ with $X \subset YK$.

(**) G_i/Γ_i is compact.

OK: every lattice in a solvable Lie grp is cocpct

(***) if X and Y are two connected subgroups of G_1 , and $X \not\subset Y$, then X diverges from Y.

Condition (***) can fail.

Eq. Let
$$G = \widetilde{\mathrm{SO}(2)} \ltimes \mathbb{R}^2$$
 and $Y = \widetilde{\mathrm{SO}(2)}$.
 $X = v^{-1}Yv \subset Y[Y, v] = Y(v^{-1})^Yv$
 $= Y \cdot (\mathrm{SO}(2)v^{-1})v = YK.$

So X does not diverge from Y.

The trouble is: $\operatorname{Ad} G \cong \operatorname{SO}(2)$ is compact (or: Zariski closure $\overline{\operatorname{Ad} G} \supset$ cpct torus) (*) every isomorphism of Γ_1 with Γ_2 extends to an isomorphism of G_1 with G_2 .

Condition (*) can fail.

Eq. Let
$$G_1 = \widetilde{SO(2)} \ltimes \mathbb{R}^2$$
 and $G_2 = \mathbb{R}^3$.
 $\Gamma_1 = Z(G) \ltimes \mathbb{Z}^2 \cong \mathbb{Z}^3 = \Gamma_2$

 G_2 is abelian, but G_1 is not, so $G_1 \not\cong G_2$. The trouble is: $\overline{\operatorname{Ad}G_1} \supset \operatorname{cpct}$ torus

Thm (Benardete-Witte). $\overline{\operatorname{Ad}G_i} \not\supseteq \operatorname{cpct} \operatorname{torus}$. Then $\mathcal{F}_1 \sim \mathcal{F}_2$ iff $\exists \operatorname{iso} \sigma: G_1 \to G_2$, such that $\sigma(V_1) = V_2$ and $\sigma(\Gamma_1)$ is conjugate to Γ_2 .

Cor. $\overline{\operatorname{Ad}G_i} \not\supseteq cpct \ torus. \ \mathcal{F}_1 \ has \ a \ dense \ leaf.$ If $f: \mathcal{F}_1 \cong \mathcal{F}_2$, then $f = c \circ a$, where

- $c: \mathcal{F}_1 \to \mathcal{F}_2$ is an affine map; and
- $a: \mathcal{F}_1 \cong \mathcal{F}_1$ maps each leaf onto itself.

(Benardete and Witte assumed V_i unimodular.)

(*) every isomorphism of Γ_1 with Γ_2 extends to an isomorphism of G_1 with G_2 .

I.e., every homeo $G_1/\Gamma_1 \sim G_2/\Gamma_2$ is homotopic to an affine map.

Thm (Witte). Tech assumps on Γ_1 , Γ_2 . Any map $G_1/\Gamma_1 \to G_2/\Gamma_2$ lifts to a map $G_1/\Gamma_1 \to G_2^{\Delta}/\Gamma_2$ that is homotopic to an affine map.

Defn. Let T be a maximal compact torus of $\overline{\operatorname{Ad}G}$. Then $G^{\Delta} = T \ltimes G \qquad \supset$ "nilshadow"

Thm (Bernstein-Witte). Tech assump on Γ_1 , Γ_2 . If $f: \mathcal{F}_1 \to \mathcal{F}_2$ is a covering map on each leaf, then $f = b \circ c''_* \circ a$.

- $a: \mathcal{F}_1 \cong \mathcal{F}_1$ maps each leaf onto itself.
- $b: G_2/\Gamma_2 \to G_2/\Gamma_2$ is a translation.
- $c: G_1 \to G_2$ is a homomorphism.

We can usually modify a homo $c: G_1 \to G_2$. Let $\delta: G_1 \to G_2^{\Delta}$ a homo with $\delta(\Gamma_1[G_1, G_1]) = e$. Define $c': G_1 \to G_2^{\Delta}$ by $c'(g) = \delta(g) \cdot c(g)$.

Under appropriate hypotheses,

- $G'_2 = c'(G_1)$ is a conn Lie subgrp of G_2^{Δ} ;
- $V'_2 = c'(V_1)$ is a subgroup of G'_2 ; and
- $\forall g \in G, c'|_{V_1g}$ is homeo onto coset of V'_2 .

Then $c'_*: \mathcal{F}_1 \to \mathcal{F}'_2$.

Can add δ' to get c''.

Rem. For $g, h \in G_1$, we have

$$c'(gh) = \delta(gh) c(gh)$$

= $\delta(g) \delta(h) c(g) c(h)$
= $\delta(g) c(g)^{\delta(h)^{-1}} \delta(h) c(h)$
= $(\delta(g) c(g))^{\delta(h)^{-1}} \delta(h) c(h)$
= $c'(g)^{\delta(h)^{-1}} c'(h)$

So c' is a crossed homomorphism.
c'' is a doubly-crossed homomorphism.
Rem. If
$$[c(G_1), \delta(G_1)] \subset c(G_1 \cap \ker \delta)$$
, then
 $c'(g)^{\delta(h)} = \delta(g) \ c(g)^{\delta(h)}$
 $= \delta(g) \ c(g) \ [c(g), \delta(h)]$
 $= \delta(g') \ c(g')$
 $= c'(g')$

so $c'(G_1)$ is a subgroup.

Rem. Our theorem holds in many cases where G_1 and G_2 are not solvable (and are not assumed to be semisimple, either), but our results are not definitive in the general case.

Technical assumptions.

•
$$\overline{\mathrm{Ad}_{G_1}\Gamma_1} = \overline{\mathrm{Ad}_{G_1}}$$

• $\overline{\mathrm{Ad}_{G_2}\Gamma'}$ is connected, $\forall \Gamma' \subset \Gamma_2$

(We use almost-Zariski closure here.)

References

• D. Benardete: Topological equivalence of flows on homogeneous spaces, and divergence of oneparameter subgroups of Lie groups. *Trans. Amer. Math. Soc.* 306 (1988) 499–527.

• D. Benardete and S. G. Dani: Topological equivalence and rigidity of flows on certain solvmanifolds. *Erg. Th. Dyn. Sys.* (to appear).

• M. S. Raghunathan: *Discrete Subgroups of Lie Groups*, Springer-Verlag, New York, 1972.

• D. Witte: Topological equivalence of foliations of homogeneous spaces. *Trans. Amer. Math. Soc.* 317 (1990) 143–166.

• D. Witte: Superrigidity of lattices in solvable Lie groups. *Invent. Math.* 122 (1995) 147–193.