Rigidity of some characteristic-p **nillattices**

Dave Witte

Department of Mathematics Oklahoma State University Stillwater, OK 74078

(joint work in progress with Lucy Lifschitz)

Outline.

- Rigidity: an example and the definition
- Lattices in unipotent \mathbb{R} -groups are rigid
- Totally disconnected local fields \mathbb{Q}_p , $\mathbb{F}_p((t))$
- Lattices in t.d. abelian groups are rigid
- \bullet Facts about lattices in unipotent $\mathbb R\text{-}\mathrm{groups}$
- A rigid lattice in a 2D unipotent group
- A rigid lattice in a Heisenberg group

• Rigidity: an example and the definition

Eg. $\operatorname{Aut}(\mathbb{Z}^n) = \operatorname{GL}(n,\mathbb{Z})$

 \Rightarrow every automorphism of \mathbb{Z}^n extends to \mathbb{R}^n

 $\Rightarrow \mathbb{Z}^n$ is *rigid* in \mathbb{R}^n (or "automorphism rigid").

Defn. Γ = subgroup of (locally cpct) group G. Γ is *rigid* if

- every automorphism ϕ of Γ virtually extends to a continuous virtual automorphism $\hat{\phi}$ of G.
- $\hat{\phi}$ virtually extends ϕ if \exists finite-index subgroup Γ' of Γ , such that $\hat{\phi}|_{\Gamma'} = \phi|_{\Gamma'}$.
- $\hat{\phi}$ is a virtual automorphism of G if \exists fin-ind closed subgrps G_1, G_2 of G, such that $\hat{\phi}: G_1 \cong G_2$.

Defn. Γ is a lattice in G if

- Γ is a discrete subgroup of G and
- G/Γ is compact.
- Eq. G = simply connected, **abelian** Lie group $\Rightarrow \Gamma$ is rigid.

• Lattices in unipotent \mathbb{R} -groups are rigid

Eg.
$$G = U_{4 \times 4}(\mathbb{R}) = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} & \mathbb{R} \\ 0 & 0 & 1 & \mathbb{R} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Defn. Unipotent group = subgroup of $U_{n \times n}(\mathbb{R})$ that is connected and (Zariski) closed.

	/1	0	$\mathbb R$	\mathbb{R}	/1	$\mathbb R$	\mathbb{R}	\mathbb{R}
Eg.	0	1	$\mathbb R$	\mathbb{R}	0	1	0	0
	0	0	1	0 ,	0	0	1	0 '
	$\setminus 0$	0	0	$_{1}$ /	$\setminus 0$	0	0	1/
	/1	s	t	$u \setminus$	/1	t	$t^{2}/2$	$\begin{pmatrix} t^3/6 \\ t^2/2 \end{pmatrix}$
	0	1	s	t	0	1	t	$t^{2}/2$
	0	0	1	s '	0	0	1	t
	$\setminus 0$	0	0	1/	$\setminus 0$	0	0	1 /

Zariski: def'd by polynomial eqns in mat entries.

Fact. Any closed, connected subgroup of $U_{n \times n}(\mathbb{R})$ is Zariski closed.

Eg.
$$\begin{pmatrix} 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^t \end{pmatrix}$$
 is **not** Zariski closed.

Prop. $G = unipotent \mathbb{R}$ -group $\subset U_{n \times n}(\mathbb{R})$. Polynomials defining G have all coeffs in \mathbb{Q} $\Leftrightarrow G \cap U_{n \times n}(\mathbb{Z}) = lattice in G$.

Thm (Malcev, 1951). $G = unipotent \mathbb{R}$ -group $\Rightarrow \Gamma$ is rigid.

In fact, ϕ extends to a unique automorphism of G.

[By induction on dim G: start with Z(G) (abel).] G =solvable \mathbb{R} -group $\not\Rightarrow \Gamma$ is rigid.

A thorough study was made by Starkov.

 $G = (\text{semi}) \text{simple } \mathbb{R} \text{-group} \Rightarrow \Gamma \text{ is rigid}$

"Mostow Rigidity Thm" except when $G \approx SL(2, \mathbb{R})$

(if we assume the center of G is trivial). [Mostow, (Margulis, Prasad)]

Superrigidity deals with extending homomorphisms, instead of only isomorphisms.

- Semisimple: Margulis, (Bass-Milnor-Serre, Raghunathan, Corlette)
- Solvable: Witte, (Saito, Gorbacevic)

• Totally disconnected local fields \mathbb{Q}_p , $\mathbb{F}_p((t))$

Fix a prime p.

$$\mathbb{Q}_p = \left\{ \sum_{i=n}^{\infty} a_i p^i \mid \begin{array}{c} a_i \in \{0, 1, 2, \dots, p-1\} \\ n \in \mathbb{Z} \end{array} \right\}.$$

This is a field (usual power series ops, plus carries).

 (\mathbb{Q}_p, d_p) is a metric space (complete, t.d., loc cpct) and the field operations are continuous.

Eq.
$$1, p, p^2, p^3, \dots \to 0$$

and $1, p^{-1}, p^{-2}, p^{-3}, \dots \to \infty$.

Defn. For $a = \sum_{i=n}^{\infty} a_i p^i \in \mathbb{Q}_p$,
• define $|a|_p = p^{-n}$ if $a_n \neq 0$; and
• $d_p(a, b) = |a - b|_p$.

Eg. unipotent \mathbb{Q}_p -group $U_{4\times 4}(\mathbb{Q}_p) = \begin{pmatrix} 1 & \mathbb{Q}_p & \mathbb{Q}_p & \mathbb{Q}_p \\ 0 & 1 & \mathbb{Q}_p & \mathbb{Q}_p \\ 0 & 0 & 1 & \mathbb{Q}_p \\ 0 & 0 & 0 & 1 \end{pmatrix}$ Fact. $G = unipotent \mathbb{Q}_p$ -group $\Rightarrow \nexists \Gamma$ (lattice). Proof. In fact, the only discrete subgroup is e. Let Γ be a discrete subgrp of $(\mathbb{Q}_p, +) \cong U_{2\times 2}(\mathbb{Q}_p)$. For $\gamma \in \Gamma$, we have $\gamma, p\gamma, p^2\gamma, \ldots \to 0$. Γ discrete $\Rightarrow p^n\gamma = 0$ for some n. \mathbb{Q}_p is a field $\Rightarrow \gamma = 0$. So $\Gamma = \{0\}$. Fix a prime p. Let $\mathbf{F} = \mathbb{F}_p((T))$ = $\left\{ \sum_{i=n}^{\infty} a_i T^i \mid \begin{array}{c} a_i \in \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \\ n \in \mathbb{Z} \end{array} \right\}.$

This is a field (under usual power series operations — there are no carries).

 \mathbf{F} has characteristic p.

 (\mathbf{F}, d) is a metric space (complete, t.d., loc cpct) and the field operations are continuous.

Eq. 1, T,
$$T^2, T^3, \dots \to 0$$

and 1, $T^{-1}, T^{-2}, T^{-3}, \dots \to \infty$.

Defn. For $a = \sum_{i=n}^{\infty} a_i T^i \in \mathbf{F}$,
• define $|a| = p^{-n}$ if $a_n \neq 0$; and
• $d(a, b) = |a - b|$.

Eg. unipotent **F**-group
$$U_{4\times4}(\mathbf{F}) = \begin{pmatrix} 1 & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ 0 & 1 & \mathbf{F} & \mathbf{F} \\ 0 & 0 & 1 & \mathbf{F} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Eq. Unipotent \mathbf{F} -groups can have lattices.

•
$$\mathbf{F}^+ = \left\{ \sum_{i=1}^{\infty} a_i T^i \right\}$$
 and
• $\mathbf{F}^- = \left\{ \sum_{i=-n}^{0} a_i T^i \right\}.$

Then \mathbf{F}^- is discrete $(d(a, b) = p^{\geq 0} \geq 1)$.

- We have $\mathbf{F} = \mathbf{F}^+ + \mathbf{F}^-$ and \mathbf{F}^+ is compact, so \mathbf{F}/\mathbf{F}^- is compact.
- Eq. $U_{n \times n}(\mathbf{F}^{-})$ is a lattice in $U_{n \times n}(\mathbf{F})$. ("S-arithmetic")
- *Rem.* A discrete subgroup Γ of **F** is a lattice \Leftrightarrow for all large $n, \exists \gamma \in \Gamma, \text{ s.t. } |x|_p = p^n$.

• Lattices in t.d. abelian groups are rigid

Prop. $G = totally disconn, abelian \Rightarrow \Gamma is rigid.$

Proof. Γ discrete $\Rightarrow \exists$ nbhd \mathcal{O} of e, s.t. $\Gamma \cap \mathcal{O} = e$. G t.d. $\Rightarrow \exists$ cpct, open subgrp K of G, s.t. $K \subset \mathcal{O}$.

Let $G' = K \times \Gamma \subset G$.

Define $\hat{\phi}: G' \to G'$ by $\hat{\phi}(k, \gamma) = (k, \phi(\gamma)).$

Then $\hat{\phi}$ extends ϕ and is a virtual automorphism of G.

• G/Γ cpct, $\Gamma \subset G' \Rightarrow G/G'$ cpct.

• $K \subset G' \Rightarrow G'$ open $\Rightarrow G/G'$ discrete.

So G/G' is finite. (I.e., G' has finite index in G.)

• Facts about lattices in unipotent \mathbb{R} -groups

Assume G = unipotent \mathbb{R} -group.

Prop. $Z(\Gamma)$ is a lattice in Z(G).

Same is true over \mathbf{F} instead of \mathbb{R} (if Γ is Zariski dense).

Prop.
$$\hat{\phi}: G_1 \to G_2$$
 is a homomorphism,
 $\Rightarrow \hat{\phi} \text{ is a polynomial and}$
 $\hat{\phi}(G_1) \text{ is (almost) Zariski closed in } G_2.$

Not true over **F**.

Eq. { poly autos of \mathbf{F} } = { $x \mapsto \alpha x \mid \alpha \in \mathbf{F}^{\times}$ }, so \mathbf{F} has only one poly auto that fixes 1. But unctily many autos of $\mathbf{F}^{-} \cong (\mathbb{F}_p)^{\infty}$ fix 1. Eq. Define $\hat{\phi}: \mathbf{F} \to \mathbf{F}$ by $\hat{\phi}(x) = x^p$. Then $\hat{\phi}(\mathbf{F}) = \sum_{i=n}^{\infty} a_i T^{pi}$ (all exp's mult of p) is Zariski dense in \mathbf{F} , but is not open. **Prop.** [Γ, Γ] is a lattice in [G, G]. **Question.** Is this true over \mathbf{F} ? • A rigid lattice in a 2D unipotent group

Let

•
$$\langle s,t \rangle = \begin{pmatrix} 1 & s^p & t \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix}$$

• $G = \{ \langle s,t \rangle \mid s,t \in \mathbf{F} \}, \text{ and}$
• $\Gamma = \{ \langle s,t \rangle \mid s,t \in \mathbf{F}^- \}.$

So Γ is a lattice in G.

Thm (Lifschitz-Witte). Γ is rigid in G.

(We expect to show finite-index subgroups of Γ are also rigid, but the proof is not quite complete.)

We have

• $\langle s_1, t_1 \rangle \langle s_2, t_2 \rangle = \langle s_1 + s_2, t_1 + t_2 + s_1^p s_2 \rangle$; and • $[\langle s_1, \cdot \rangle, \langle s_2, \cdot \rangle] = \langle 0, \llbracket s_1, s_2 \rrbracket \rangle$, where $\llbracket x, y \rrbracket = x^p y - x y^p$.

Define $\phi^*, \phi_* \colon \mathbf{F}^- \to \mathbf{F}^-$ by $\phi(\langle s, t \rangle) = \langle \phi^*(s), \phi_*(t) + \varepsilon(s) \rangle.$

Then $[\![\phi^*(s_1), \phi^*(s_2)]\!] = \phi_*([\![s_1, s_2]\!]).$

Note that $\mathbf{F}^- = \mathbb{F}_p[T^{-1}]$ is a polynomial ring.

Lem.
$$\dim_{\mathbb{F}_p} \frac{\llbracket \mathbf{F}^-, \mathbf{F}^- \rrbracket}{\llbracket a, \mathbf{F}^- \rrbracket + \llbracket b, \mathbf{F}^- \rrbracket} < \infty$$

 $\Leftrightarrow b \in a \mathbf{F}^p \setminus \mathbb{F}_p.$

Proof. (\Leftarrow) $\exists u, v \in \mathbf{F}^-$, such that $au^p = bv^p$. For $r \in \mathbf{F}^-$, we have

$$\begin{split} \llbracket a, ur \rrbracket - \llbracket b, vr \rrbracket \\ &= (a^{p}ur - au^{p}r^{p}) - (b^{p}vr - bv^{p}r^{p}) \\ &= (a^{p}ur - b^{p}vr) - (au^{p}r^{p} - bv^{p}r^{p}) \\ &= (a^{p}u - b^{p}v)r - 0. \end{split}$$

So $\llbracket a, \mathbf{F}^{-} \rrbracket + \llbracket b, \mathbf{F}^{-} \rrbracket \ni$ el't of any large degree. For future reference:

Cor (of proof). $(T^{-p^2} - T^{-1})\mathbf{F}^- \subset \llbracket (\mathbf{F}^-)^p, \mathbf{F}^- \rrbracket$.

Proof.
$$a = T^{-p}, b = 1, u = 1, v = T^{-1}$$

⇒ $a^{p}u - b^{p}v = T^{-p^{2}} - T^{-1}$.

Defn. $a \in \mathbf{F}^-$ is separable if a is not divisible by any nonconstant pth power.

Cor. $a \in \mathbf{F}^-$ separable $\Rightarrow \exists$ separable $b \in \mathbf{F}^-$, such that $\phi^*(a(\mathbf{F}^-)^p) = b(\mathbf{F}^-)^p$.

Proof. For $a, b \in \mathbf{F}^- \setminus \{0\}$, define $a \equiv b \Leftrightarrow b \in a\mathbf{F}^p$. Lemma: $a \equiv b \Leftrightarrow \phi^*(a) \equiv \phi^*(b)$.

Each equiv class is $c(\mathbf{F}^{-})^{p}$, for sep'ble $c \in \mathbf{F}^{-}$.

Prop.
$$a \in \mathbf{F}^{-}$$
 separable \Rightarrow
$$\dim_{\mathbb{F}_{p}} \frac{[\![\mathbf{F}^{-}, \mathbf{F}^{-}]\!]}{[\![a(\mathbf{F}^{-})^{p}, \mathbf{F}^{-}]\!]} = (p-1)(\deg^{-}a) + Q,$$
where $Q = \#$ irreducible quadratic factors of a .

Cor.
$$[a(\mathbf{F}^{-})^{p}, \mathbf{F}^{-}] = [\mathbf{F}^{-}, \mathbf{F}^{-}] \Leftrightarrow a \in \mathbb{F}_{p} \setminus 0.$$

Cor. $\phi^{*}((\mathbf{F}^{-})^{p}) = (\mathbf{F}^{-})^{p}.$
In fact, $\phi^{*}((\mathbf{F}^{-})^{p^{n}}) = (\mathbf{F}^{-})^{p^{n}}$ for each $n.$

Cor. $\phi^*(\mathbb{F}_p) = \mathbb{F}_p$.

Proof.
$$\mathbb{F}_p = \bigcap_{n=0}^{\infty} (\mathbf{F}^-)^{p^n}$$
.

Cor. $\phi^*(\text{separable}) = \text{separable}.$

Proof. Restrict attention to

$$\phi^*|_{a(\mathbf{F}^-)^p} : a(\mathbf{F}^-)^p \to b(\mathbf{F}^-)^p.$$

Cor. deg⁻ $\phi^*(a) = \text{deg}^- a$ for all $a \in \mathbf{F}^-$.

Proof. Suffices to prove for a separable (with no quadratic factors).
Proposition: deg⁻ φ^{*}(a) ≤ deg⁻ a.
By induction on deg⁻ a, must have equality. ■
Lem [a(F⁻)^p F⁻] + [b(F⁻)^p F⁻] - [F⁻ F⁻]

Lem.
$$\llbracket a(\mathbf{F}^{-})^{p}, \mathbf{F}^{-} \rrbracket + \llbracket b(\mathbf{F}^{-})^{p}, \mathbf{F}^{-} \rrbracket = \llbracket \mathbf{F}^{-}, \mathbf{F}^{-} \rrbracket$$

 $\Leftrightarrow \gcd(a, b) = 1.$

Proof. Generalization of first corollary. \blacksquare

Cor. $gcd(a,b) = 1 \Leftrightarrow gcd(\phi^*(a),\phi^*(b)) = 1.$

We may assume $\phi^*(a) = a$ whenever deg⁻ $a \le 1$. (Compose with $\lambda(a(T)) = \alpha a(\beta T + \gamma))$).

Show, by induction on deg⁻ a, that $\phi^* = \text{Id.} \blacksquare$

 $\begin{array}{l} \mathbf{Prop.} \ a \in \mathbf{F}^{-} \ separable \Rightarrow \\ \dim_{\mathbb{F}_{p}} \frac{\llbracket \mathbf{F}^{-}, \mathbf{F}^{-} \rrbracket}{\llbracket a(\mathbf{F}^{-})^{p}, \mathbf{F}^{-} \rrbracket} = (p-1)(\deg^{-}a) + Q, \\ where \ Q \ = \ \# \ irreducible \ quadratic \ factors \ of \ a. \end{array}$

Proof. For simplicity, assume a = 1. We wish to show $\llbracket (\mathbf{F}^{-})^{p}, \mathbf{F}^{-} \rrbracket = \llbracket \mathbf{F}^{-}, \mathbf{F}^{-} \rrbracket$. Recall that $(T^{-p^{2}} - T^{-1})\mathbf{F}^{-} \subset \llbracket (\mathbf{F}^{-})^{p}, \mathbf{F}^{-} \rrbracket$, so we may work in the quotient ring $\overline{R} = \mathbf{F}^{-}/(T^{-p^{2}} - T^{-1})\mathbf{F}^{-}$.

Chinese Remainder Theorem:

$$\overline{R} \cong \bigoplus_{\substack{f \mid T^{-p^2} - T^{-1}}} \frac{\mathbf{F}^-}{f\mathbf{F}^-}$$
$$\cong (\mathbb{F}_p)^p \oplus (\mathbb{F}_{p^2})^{p(p-1)/2}$$
since $T^{-p^2} - T^{-1} = \prod \{\text{irred polys of deg} \le 2\}.$

We have

•
$$\llbracket \mathbb{F}_p, \mathbb{F}_p \rrbracket = 0 = \llbracket 1, \mathbb{F}_p \rrbracket$$
 and

•
$$\llbracket \mathbb{F}_{p^2}, \mathbb{F}_{p^2} \rrbracket = \mathbb{F}_p = \llbracket 1, \mathbb{F}_{p^2} \rrbracket,$$

SO

 $\llbracket \overline{R}, \overline{R} \rrbracket = \llbracket 1, \overline{R} \rrbracket = \llbracket \overline{R}^p, \overline{R} \rrbracket. \blacksquare$

• A rigid lattice in a Heisenberg group

Thm (Lifschitz-Witte). $G = U_{3\times 3}(\mathbf{F})$ $\Rightarrow U_{3\times 3}(\mathbf{F}^-)$ is rigid in G.

Question. Is Γ essentially the only lattice in G?

I.e., given a lattice Γ' of G, is there always a virtual automorphism ψ of G, such that $\psi(\Gamma)$ is virtually Γ' ?

Problem. Suppose V is a lattice in \mathbf{F} , such that xV is virtually V, for each $x \in V$. Is V virtually a subring of \mathbf{F} ?

References

• V. V. Gorbacevič: Generalized Ljapunov Theorem on Mal'cev manifolds, *Math. USSR-Sb.* 23 (1974) 155–168.

• A. I. Malcev, On a class of homogeneous spaces, *Amer. Math. Soc. Transl.* No. 39 (1951) = 9 (1962) 276–307.

• G. A. Margulis, *Discrete Subgroups of Semisim*ple Lie Groups, Springer-Verlag, New York, 1991.

• G. D. Mostow: Strong Rigidity of Locally Symmetric Spaces, Princeton University Press, Princeton, 1973.

• M. S. Raghunathan, *Discrete Subgroups of Lie Groups*, Springer-Verlag (New York) 1972.

M. Saito, Sur certains groupes de Lie résolubles II, Sci. Papers Coll. Gen. Ed. Tokyo 7 (1957) 157– 168. • A. N. Starkov, Rigidity problem for lattices in solvable Lie groups, *Proc. Indian Acad. Sci.* (*Math. Sci.*) 4 (1994) 495–514.

• D. Witte, Superrigidity of lattices in solvable Lie groups, *Inventiones Math.* 122 (1995) 147-193.