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e Rigidity: an example and the definition
Eg. Aut(Z") = GL(n, Z)

= every automorphism of Z" extends to R"

= 7" is rigid in R" (or “automorphism rigid”).

Defn. T' = subgroup of (locally cpct) group G.
I' is rigid it
every automorphism ¢ of I' virtually extends
to a continuous virtual automorphism gg of G.
o qAﬁ virtually extends ¢ it
7 finite-index subgroup IV of T,
such that ¢|r = |
o ¢E is a virtual automorphism ot G it
3 fin-ind closed subgrps G1, G2 of G,
such that ¢E: G1 = Go.

Defn. I' is a lattice in G it
e [' is a discrete subgroup of G and
e G/I'" is compact.

FEg. G = simply connected, abelian Lie group
= I is rigid.



e Lattices in unipotent R-groups are rigid

Defn. Unipotent group = subgroup of U, x,(R)
that is connected and (Zariski) closed.

1 0 R R 1 R R R
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Zariski: det’d by polynomial eqns in mat entries.

Fact. Any closed, connected subgroup of Uy xn(R)
18 Zariskt closed.
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Prop. G = unipotent R-group C U, xn(R).
Polynomials defining G have all coeffs in Q
& GNUpxn(Z) = lattice in G.

Thm (Malcev, 1951). G = unipotent R-group
= I 1s rigid.

In fact, ¢ extends to a unique automorphism of G.

By induction on dim G: start with Z(G) (abel).]

(G = solvable R-group #- I is rigid.
A thorough study was made by Starkov.

G = (semi)simple R-group = T is rigid
“Mostow Rigidity Thm”
except when G =~ SL(2,R)
(if we assume the center of G is trivial).
[Mostow, (Margulis, Prasad)]

Superrigidity deals with extending homomor-
phisms, instead of only isomorphisms.
e Semisimple: Margulis, (Bass-Milnor-Serre,
Raghunathan, Corlette)
e Solvable: Witte, (Saito, Gorbacevic)
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e Totally disconnected local fields Q,, F,,((%))

Fix a prime p.

Qp — { Zzn az'pi

This is a field (usual power series ops, plus carries).

CLiE{O,l,Q,...,p—l}
n e Z '

(Q,, d,) is a metric space (complete, t.d., loc cpct)
and the field operations are continuous.

Eg. 1,p,p°,p°,... =0

and 1,p~ 1, p™ 2%, p73,... = 0.

Defn. For a = Zoi a;p' € Q,,
e define |a|, =p~ " if a,, # 0; and
e d,(a,b) =|a—bl,.

Eg. unipotent Q,-group
1 Q Q @

U4><4(@p) — 8 (1) Qip gi

0O 0 O 1



Fact. G = unipotent Q,-group = A T' (lattice).

Proof. In fact, the only discrete subgroup is e.
Let I' be a discrete subgrp of (Q,, +) = Usx2(Q,).

For v € I, we have ~, py, p°v, ... — 0.
[' discrete = p"~v = 0 for some n.
Q, 1s a field = v = 0.
Sol'={0}. m




Fix a prime p. Let F =TF,((T))

:{Zoi a; T a; € Fp = Z/pZ }

_ n € 7

This is a field (under usual power series operations

— there are no carries).
F has characteristic p.

(F,d) is a metric space (complete, t.d., loc cpct)
and the field operations are continuous.

Eg. 1,7,7%,T3,... -0
and 1,71, 772775, ... - .
Defn. For a = Zoi a;T" € F,

e define |a| = p™" if a,, # 0; and
e d(a,b) = |a — b|.
Eg. unipotent F-group
1 F F F
0O 1 F F
Vba®) =14 ¢ 1 F
0O 0 0 1



Eg. Unipotent F-groups can have lattices.
@)

+ __ e al’
o '™ = {Zizl a; T } and
0 .
cF - {Z- T}
Then F~ is discrete (d(a,b) = p=° > 1).

We have F = F" + F~ and F* is compact,
so F/F~ is compact.

Eg. Upxn(F7) is a lattice in Uy, ., (F).
(“S-arithmetic”)

Rem. A discrete subgroup I' of F is a lattice
& for all large n, 3y € T, s.t. |x|, = p".



e Lattices in t.d. abelian groups are rigid

Prop. G = totally disconn, abelian = I' is rigid.

Proof. T" discrete = dnbhd O of e, s.t. I'NO = e.
G t.d. = d cpct, open subgrp K of G,
s.t. K CO.

Let G’ = K xT C G.
Define ¢: G’ — G’ by
o(k,v) = (k, o(7)).

Then gg extends ¢
and is a virtual automorphism of G.

e G/T cpct, ' C G = G/G" cpct.
e K C G' = G' open = G/G’ discrete.
So G/G' is finite. (I.e., G' has finite index in G.)
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e Facts about lattices in unipotent R-groups

Assume G = unipotent R-group.

Prop. Z(I') is a lattice in Z(G).

Same is true over F instead of R
(if " is Zariski dense).

Prop. qu G1 — G2 s a homomorphism,

= gg 1$ a polynomaial and

A

¢(G1) is (almost) Zariski closed in G.

Not true over F.

Eg. {poly autos of F} ={z— azx|a e F*},
so F has only one poly auto that fixes 1.
But unctbly many autos of F~ = (F,)* fix 1.

Eg. Define ¢:F — F by ¢(z) = 2P

Then ¢(F) = Zoi a; TP (all exp’s mult of p)
is Zariski dense in F, but is not open.

Prop. [I',T'] is a lattice in |G, G].

Question. Is this true over F?
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e A rigid lattice in a 2D unipotent group

Let
1 s
e (s,t) =0 1 s
0 0 1
e G={(s,t)|s,teF} and

o '={(s,t)|s,teF }.
So I' is a lattice in G.

Thm (Lifschitz-Witte). ' is rigid in G.

(We expect to show finite-index subgroups of I' are

also rigid, but the proof is not quite complete.)

We have
o (s1,t1)(S2,t2) = (s1+S2,t1+1t2+5]s2); and

¢ [<817 '>7 <527 >] — <07 [[81732]]>7

where |z, y] = 2Py — xy”.

Defn. Define ¢*, ¢p.: F~ — F~ by
B((s,1)) = (&7(5), D« (t) +2(5)).

Then [¢7(s1), 9" (52)] = @«([51, 52]).
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Note that F~ = F,[T'] is a polynomial ring.

Lem. d
em. dimg, ﬂa,F_]] n [[b,F—]] < o0
& beaF? \F,.

Proof. (<=) 3 u,v € F~, such that au? = bv”.
For r € F—, we have
la, ur] — [b, vr]
= (aPur — auPr?) — (bPvr — bvPrP)
= (aPur — bPvr) — (auPr? — bvPrP)

= (aPu — bPv)r — 0.
So [a, F~ ]+ [b,F ] > el't of any large degree. m
For future reference:

Cor (of proof). (T_p2 ~ T HF Cc[(F)?,F].

Proof. a=T P, b=1,u=1,0v=T""
—aPu—WPo=T" —T ' m
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Defn. a € F~ is separable if a is not divisible by
any nonconstant pth power.

Cor. a € F~ separable = 4 separable b € F—,
such that ¢* (a(F~)P) = b(F~)P.

Proof. For a,b € F~\{0}, definea =b < b € aF?.
Lemma: a =b < ¢"(a) = ¢" (D).

Each equiv class is ¢(F )P, for sep’ble ce F~. m

Prop. a € F~ separable =

[F—,F7] _
P [[CL(F_)p F_]] — (p o 1)(deg a) - Q:
where () = # irreducible quadratic factors of a.

Cor. [a(F )’ F |=[F ,F | <aclF,\O.

Cor. ¢*((F7)?) = (F;)p. )
In fact, o*(F~)P ) = (F7)P for each n.

Cor. ¢"(F,) =TF,.

Proof. F,, = ﬂOO_O(F_)pn. n
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Cor. ¢"(separable) = separable.

Proof. Restrict attention to
¢ laE-yr:a(F7)P = b(F7)". =

Cor. deg™ ¢*(a) =deg™ a for alla € F~.

Proof. Suffices to prove for a separable
(with no quadratic factors).
Proposition: deg™ ¢*(a) < deg™ a.
By induction on deg™ a, must have equality. ®
Lem. [a(F )", F |+ [b(F )’ F | =[F ,F]
< ged(a,b) = 1.

Proof. Generalization of first corollary. m

Cor. ged(a,b) =1 < ged(¢*(a), 9™ (b)) = 1.

We may assume ¢*(a) = a whenever deg™ a < 1.
(Compose with A(a(T)) = aa(B8T +7))).
Show, by induction on deg™ a, that ¢* =1d. m



Prop. a € F~ separable =

[F—,F~] _
[[CL(F_)p F_]] — (p o 1>(deg a’) —I_ Q?
where () = # irreducible quadratic factors of a.

dime

Proof. For simplicity, assume a = 1.
We wish to show [(F7)?, F | =[F ,F|.

Recall that (777 — T"Y)F~ c [(F)?,F],
so we may work in the quotient ring
R=F/)(T"" —T HF".

Chinese Remainder T%e_orem:
R = —
S =
fIT—P" —T—1
= (Fp)” @ (Fpe )p(p_l)/2
since T™7 — T~ = H{irred polys of deg < 2}.

We have
o [F,,F,] =0=][1,F,] and
o [[FPQ,FPQ]] = Fp — [[LFPQ]]?
SO

[R,R]=[1,R]=[R",R]. m

15
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e A rigid lattice in a Heisenberg group

Thm (Lifschitz-Witte). G = Usy3(F)
= Usx3(F7) is rigid in G.

Question. Is I' essentially the only lattice in G'¢

I.e., given a lattice IV of G,
is there always a virtual automorphism ¥ of G,
such that ¢(I") is virtually I''?

Problem. Suppose V' is a lattice in F,
such that xV is virtually V', for each x € V.
Is V' wvirtually a subring of F ¢
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