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Abstract. SL(n,Z) is the basic example of a lattice in SL(n,R), and a
lattice in any other semisimple Lie group G can be obtained by
intersecting (a copy of) G with SL(n,Z). We will discuss the main ideas
behind three different approaches to proving the important fact that the
integer points do form a lattice in G.
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Recall
Γ is a lattice in G means

Γ is a discrete subgroup of G, and

G/Γ has finite volume (e.g., compact)

Remark
M = hyperbolic 3-manifold of finite volume (e.g., compact)

⇐⇒ M = h3/Γ , where Γ = (torsion-free) lattice in SO(1,3).

More generally:

locally symmetric space of finite volume
←→ (torsion-free) lattice in semisimple Lie group G

So it would be nice to have an easy way to make lattices.
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Example

SL(n,Z) is a lattice in SL(n,R)

SL(n,Z) is the basic example of an arithmetic group.

More generally:

For G ⊂ SL(n,R) (with some technical conditions):
GZ = G ∩ SL(n,Z) is an arithmetic subgroup of G.

GZ is a lattice in G.

Arithmetic groups are lattices.

Remark (“Margulis Arithmeticity Theorem”)

Converse if R-rankG ≥ 2 (and Γ is irreducible).
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Theorem (Siegel, Borel & Harish-Chandra, 1962)

G is a (connected) semisimple Lie group

G ↩ SL(n,R)
G is defined over Q
i.e. G is defined by polynomial equations with Q coefficients
i.e. Lie algebra of G is defined by linear eqs with Q coeffs
i.e. GQ is dense in G
i.e. GZ is Zariski dense in G [if G has no compact factors]

i.e. GZ " connected, proper subgroup of G

#⇒ GZ is a lattice in G.

Remark
It is obvious that GZ is discrete.

It is not obvious that G/GZ has finite volume.
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GZ is a lattice in G

Example

SL(2,Z) is a lattice in SL(2,R).

Proof.
Fundamental domain:

Area(F) <
∫∞

ε

∫ 1/2

−1/2

dx
y
dy
y
=
∫∞

ε

1
y2 dy <∞
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A short proof for some lattices

Example

SO(n,1;Z) is a lattice in SO(1, n). Not so easy to prove.

Example

B(x1, . . . , x4) = x2
1 + x2

2 + x2
3 − 7x2

4
#⇒ SO

(
B("x);Z) is a lattice in SO

(
B("x)

)
+ SO(3,1).

In fact, G/GZ is compact.

Proposition

G = SO
(
B("x)

)

B("x) a (nondegenerate) quadratic form with Z coeffs

B("x) anisotropic: B(v) ≠ 0 for v ∈ (Zn)×

#⇒ G/GZ is compact.
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Proof
G/GZ ↩ SL(n,R)/ SL(n,Z)

Proof has 2 parts:
1 G/GZ is closed in SL(n,R)/ SL(n,Z).

(True for any G defined over Q.)
2 G/GZ is precompact in SL(n,R)/ SL(n,Z).

Part 1 of the proof.

Suppose giγi → h with gi ∈ G and γi ∈ SL(n,Z).
For v ∈ Zn: B(γiv) = B(giγiv)→ B(hv),

but B(γiv) ∈ B(Zn) ⊂ Z.
So B(γiv) = B(hv) is (eventually) constant: B(γiv) = B(γ0v).

For simplicity, assume γ0 = e.
Then B(hv) = B(γiv) = B(γ0v) = B(v).
So h ∈ SO

(
B("x)

)
= G.
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For Part 2 of the proof, we need a lemma:

Mahler Compactness Criterion

Let C ⊂ SL(n,R).
The image of C in SL(n,R)/ SL(n,Z) is precompact

⇐⇒ 0 is not an accumulation point of CZn.

Proof (⇒).
Suppose cnzn → 0 and cnγn → h. We may assume γn = e.
Then hzn ≈ cnzn ≈ 0. But hZn is discrete. So zn = 0.

Converse is an exercise. (Try for n = 2 first.)

Part 2 of the proof.

gnvn ∈ G(Zn)× #⇒ B(gnvn) = B(vn) ∈ B
(
(Zn)×

)
∈ Z×

(because B("x) is anisotropic with Z coefficients)
#⇒ B(gnvn) /→ 0
#⇒ gnvn /→ 0.
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A dynamical proof that GZ is a lattice [Margulis]

Any line segment that reaches the
boundary of the large disk has only a
small fraction of its length inside the
tiny disk.

Theorem (Dani-Margulis)

x ∈ SL(n,R)/ SL(n,Z),
u ∈ SL(n,R) unipotent

I.e., u is conjugate to an element of N.

#⇒ ∃ compact C ⊂ SL(n,R)/ SL(n,Z),

lim inf
R→∞

#{k ∈ [0, R] | ukx ∈ C }
R

> 0
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Corollary

∃ u-invariant ϕ ∈ L1
(
SL(n,R)/ SL(n,Z)

)
% {0}.

Proof.
SL(n,R)/ SL(n,Z) can be covered by countably many cpct sets,
so ∃ cpct C that works for all x in a set of positive measure.

Let ϕ(x) = lim infR→∞
#{k∈[0,R]|ukx∈C }

R .
∫
G/Γ ϕ =

∫
lim inf 1

R
(
χC + χC ◦u−1 + χC ◦u−2 + · · · + χC ◦u−R

)

≤ lim inf
∫
G/Γ

1
R
(
χC + χC ◦u−1 + χC ◦u−2 + · · · + χC ◦u−R

)

(“Fatou’s Lemma”)
= lim inf 1

R
(∫
χC +

∫
χC ◦u−1 +

∫
χC ◦u−R

)

= lim inf 1
R
(∫
χC +

∫
χC +

∫
χC + · · · +

∫
χC
)

=
∫
χC

<∞.

And ϕ > 0 on a set of positive measure, so ϕ ≠ 0 in L1.
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Combine with decay of matrix coefficients:

Theorem (Howe-Moore)

ϕ,ψ ∈ L2(G/Γ)3 constants #⇒ lim
g→∞

〈ϕ,ψ ◦ g〉 = 0.

In fact, valid for vectors in any unitary representation of G.

Corollary (Mautner Phenomenon)

H noncompact, closed subgroup of G,

ϕ ∈ Lp(G/Γ), H-invariant

#⇒ ϕ is constant.

Proof.
Wolog assume p = 2 and ϕ ⊥ constants.

0 = lim
g→∞

〈ϕ,ϕ ◦ g〉 = lim
h→∞

〈ϕ,ϕ ◦ h〉 = lim
h→∞

〈ϕ,ϕ〉 = ‖ϕ‖2
2

#⇒ ϕ = 0 is constant.
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Corollary

SL(n,Z) is a lattice in SL(n,R).

Proof.

We know ∃ u-invariant ϕ ∈ L1
(
SL(n,R)/ SL(n,Z)

)
% {0}.

Howe-Moore: ϕ is constant.

So SL(n,R)/ SL(n,Z) has finite measure.

Proof generalizes easily to general GZ.
Just need to know G/GZ is closed in SL(n,R)/ SL(n,Z).

Chevalley’s Theorem: G defined over Q
#⇒ ∃ ϕ : SL(n,R)→ SL(N,R) with

G = Stab(vector in QN), and

ϕ
(
SL(n,Z)

) .⊂ SL(N,Z).
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Proof of Howe-Moore Theorem.
Let {gj} ⊂ G, with ‖gj‖ → ∞.

For simplicity, assume G = SL(2,R) and {gj} ⊂
[
∗

∗

]
= A.

Passing to subseq, wma gj converges weakly, to some E:
〈gjϕ | ψ〉 → 〈Eϕ | ψ〉 ∀ϕ,ψ ∈ L2.

Also assume gjug−1
j → e for u ∈ N =

[
1 ∗

1

]
. So

〈Euϕ | ψ〉 = lim〈gjuϕ | ψ〉 = lim〈(gjug−1
j ) gjϕ | ψ〉

= lim〈gjϕ | ψ〉 =〈 Eϕ | ψ〉,
so Eu = E; i.e., E(u− Id) = 0.
% u-inv’t vectors in L2 #⇒ img(u− Id) dense, so E = 0.

Actual proof:

E annihilates img(u− Id).
E∗ annihilates img(v − Id) for v ∈ N− =

[
1
∗ 1

]
.

E∗E = E E∗, so kerE = kerE∗.
img(u− Id)+ img(v − Id) dense in L2 3 constants.
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The traditional proof

Example

SL(n,Z) is a lattice in SL(n,R).

Proof uses Iwasawa decomposition: G = KAN, where

K = SO(n),
A = diagonal matrices (with positive entries, so A is
connected),

N = upper triangular, with 1s on the diagonal.

(To show g = kan, use Gram-Schmidt orthogonalization.)
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Example

For n = 2, let

Ac =
{[

t
1/t

]
∈ A

∣∣∣∣∣ 0 < t ≤ c
}

Nc =
{[

1 t
0 1

]
∈ N

∣∣∣∣∣ |t| ≤ c
}

(“Siegel set”) Sc = KAcNc
The picture of Sc in h2 is:

Proof that Γ = SL(2,Z) is a lattice:
1 ScΓ = SL(2,R) (∃c)
2 Sc has finite measure (∀c)

Generalize to SL(n,R).
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Write g = kan, with a = a(g) =




a11(g)
a22(g)

. . .
ann(g)



.

Note that a11(g) = ‖ge1‖.

Key Lemma

a11(g) ≤ a11(gγ), ∀γ ∈ SL(n,Z) #⇒ a11(g) < 2a22(g).

Corollary

For n = 2: ScΓ = SL(2,R) if c ≥
√

2.

Proof.
Given g ∈ SL(2,R). Assume wolog that g minimizes a11 on gΓ .

So a11 < 2a22.
Then 2 = 2a11a22 > a2

11, so a11 <
√

2.
Multiplying g by an element of NZ, assume |n(g)| ≤ 1/2.
So g ∈ KA√2N1/2 ⊂ Sc .
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For general n, let

Ac = {a ∈ A | aii < c ai+1 i+1, ∀i }
Nc = {n ∈ N | ‖n− Id‖ < c }
(“Siegel set”) Sc = KAcNc

Corollary (of Key Lemma)

SL(n,R) = Sc SL(n,Z) for c ≥ 2.

Proof is by induction.

Exercise
Sc has finite volume (for all c)
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Key Lemma

a11(g) ≤ a11(gγ), ∀γ ∈ SL(n,Z) #⇒ a11(g) < 2a22(g).

Proof.
a11 = ‖ge1‖ ≤ ‖ge2‖ =‖ (kan)e2‖ =‖ ane2‖ =‖ a(e2 + te1)‖

= ‖a22e2 + ta11e1‖ =
√
a2

22 + t2a2
11 ≤

√
a2

22 + 1
4a

2
11

This lemma is easy, but stating and proving an analogous
result for general G requires substantial algebra (the theory of
algebraic groups).

The big advantage of this proof is that it provides a coarse (or
approximate) fundamental domain that can be used to study
the topology and geometry of G/Γ .
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