Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca Abstract. $SL(n, \mathbb{Z})$ is the basic example of a lattice in $SL(n, \mathbb{R})$, and a lattice in any other semisimple Lie group <i>G</i> can be obtained by intersecting (a copy of) <i>G</i> with $SL(n, \mathbb{Z})$. We will discuss the main ideas behind three different approaches to proving the important fact that the integer points do form a lattice in <i>G</i> .	• G/Γ has finite volume (e.g., compact) Remark M = hyperbolic 3-manifold of finite volume (e.g., compact) $\iff M = \mathfrak{h}^3/\Gamma$, where $\Gamma =$ (torsion-free) lattice in SO(1, 3) More generally: locally symmetric space of finite volume \iff (torsion-free) lattice in semisimple Lie group G So it would be nice to have an easy way to make lattices.
lattice in any other semisimple Lie group <i>G</i> can be obtained by intersecting (a copy of) <i>G</i> with $SL(n, \mathbb{Z})$. We will discuss the main ideas behind three different approaches to proving the important fact that the integer points do form a lattice in <i>G</i> .	\leftrightarrow (torsion-free) lattice in semisimple Lie group <i>G</i>
e write storms (only, or redubridge) why arithmetic groups are lattices 0 or cincago (une 2010) 1 / 13	ve Witte Morris (Univ. of Lethbridge) Why arithmetic groups are lattices U of Chicago (June 2010)
Example	Theorem (Siegel, Borel & Harish-Chandra, 1962)
$SL(n, \mathbb{Z})$ is a lattice in $SL(n, \mathbb{R})$	• <i>G</i> is a (connected) semisimple Lie group
$SL(n, \mathbb{Z})$ is the basic example of an <i>arithmetic group</i> .	 G → SL(n, ℝ) G is defined over Q
More generally:	i.e. <i>G</i> is defined by polynomial equations with \mathbb{Q} coefficients i.e. Lie algebra of <i>G</i> is defined by linear eqs with \mathbb{Q} coeffs
For $G \subset SL(n, \mathbb{R})$ (with some technical conditions): $G_{\mathbb{Z}} = G \cap SL(n, \mathbb{Z})$ is an <i>arithmetic subgroup</i> of <i>G</i> . $G_{\mathbb{Z}}$ is a lattice in <i>G</i> .	i.e. $G_{\mathbb{Q}}$ is dense in G i.e. $G_{\mathbb{Z}}$ is Zariski dense in G [if G has no compact factors] i.e. $G_{\mathbb{Z}} \not\subset$ connected, proper subgroup of G
	$\Rightarrow G_{\mathbb{Z}}$ is a lattice in <i>G</i> .

Remark ("*Margulis Arithmeticity Theorem*") Converse if \mathbb{R} -rank $G \ge 2$ (and Γ is irreducible).

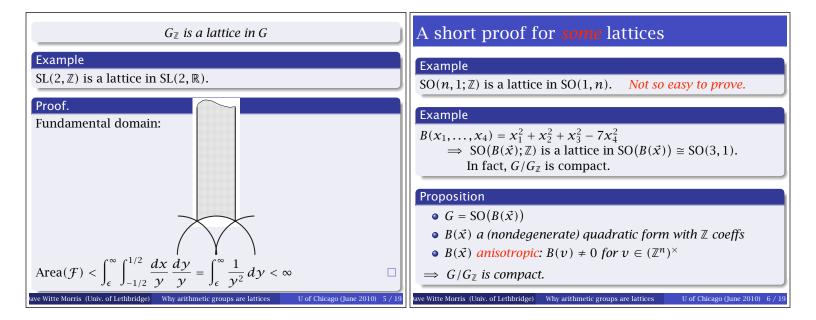
ave Witte Morris (Univ. of Lethbridge) Why arithmetic groups are lattices

• It is obvious that $G_{\mathbb{Z}}$ is discrete. • It is not obvious that $G_{\mathbb{Z}}$ has finite volume.

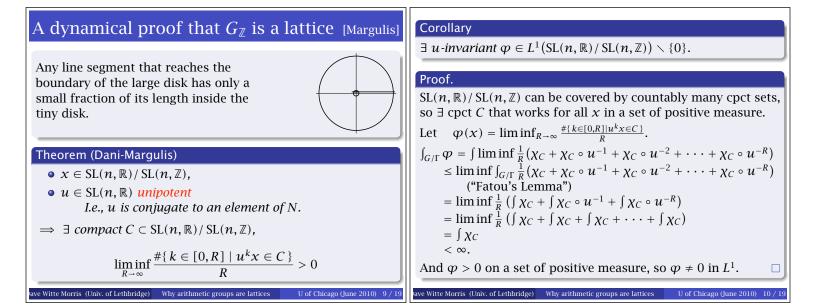
• It is *not* obvious that $G/G_{\mathbb{Z}}$ has finite volume.

U of Chicago (June 2010) 4

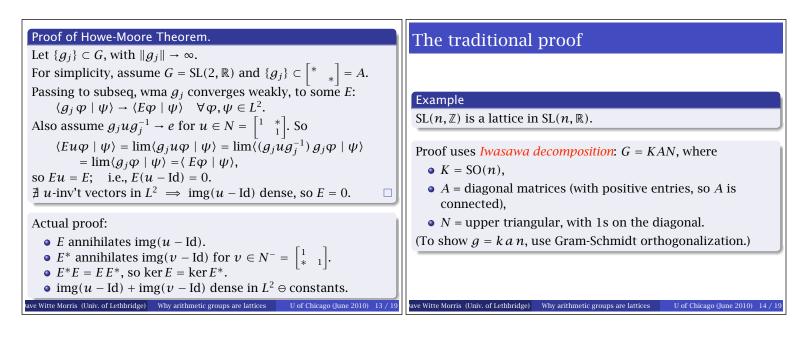
ave Witte Morris (Univ. of Lethbridge) Why arithmetic groups are lattices

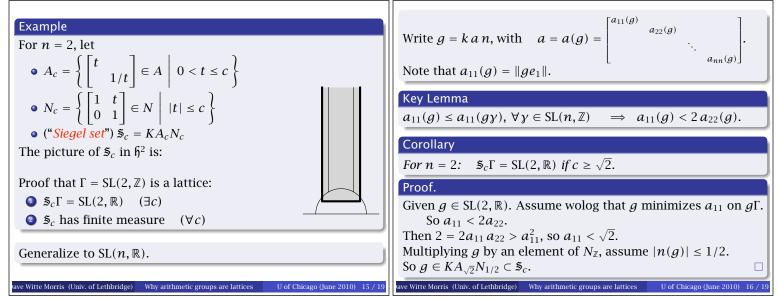


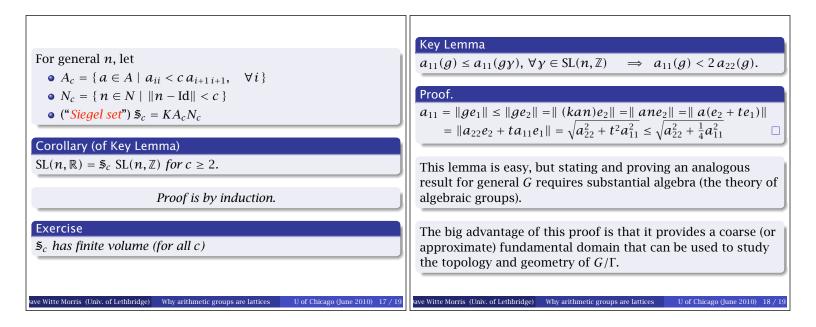
Proof	For Part 2 of the proof, we need a lemma:
$G/G_{\mathbb{Z}} \hookrightarrow \operatorname{SL}(n, \mathbb{R}) / \operatorname{SL}(n, \mathbb{Z})$	Mahler Compactness Criterion
Proof has 2 parts: $G/G_{\mathbb{Z}}$ is closed in SL (n, \mathbb{R}) / SL (n, \mathbb{Z}) . (True for any <i>G</i> defined over \mathbb{Q} .)	Let $C \subset SL(n, \mathbb{R})$. The image of C in $SL(n, \mathbb{R}) / SL(n, \mathbb{Z})$ is precompact $\iff 0$ is not an accumulation point of $C\mathbb{Z}^n$.
② $G/G_{\mathbb{Z}}$ is precompact in SL(<i>n</i> , ℝ)/SL(<i>n</i> , ℤ).	Proof (⇒).
Part 1 of the proof.	Suppose $c_n z_n \to 0$ and $c_n \gamma_n \to h$. We may assume $\gamma_n = e$. Then $h z_n \approx c_n z_n \approx 0$. But $h \mathbb{Z}^n$ is discrete. So $z_n = 0$.
Suppose $g_i \gamma_i \to h$ with $g_i \in G$ and $\gamma_i \in SL(n, \mathbb{Z})$. For $v \in \mathbb{Z}^n$: $B(\gamma_i v) = B(g_i \gamma_i v) \to B(hv)$,	Converse is an exercise. (Try for $n = 2$ first.)
but $B(\gamma_i v) \in B(\mathbb{Z}^n) \subset \mathbb{Z}$.	Part 2 of the proof.
So $B(y_iv) = B(hv)$ is (eventually) constant: $B(y_iv) = B(y_0v)$. For simplicity, assume $y_0 = e$. Then $B(hv) = B(y_iv) = B(y_0v) = B(v)$. So $h \in SO(B(\vec{x})) = G$.	$g_n v_n \in G(\mathbb{Z}^n)^{\times} \implies B(g_n v_n) = B(v_n) \in B((\mathbb{Z}^n)^{\times}) \in \mathbb{Z}^{\times}$ (because $B(\vec{x})$ is anisotropic with \mathbb{Z} coefficients) $\implies B(g_n v_n) \neq 0$ $\implies g_n v_n \neq 0.$
ave Witte Morris (Univ. of Lethbridge) Why arithmetic groups are lattices U of Chicago (June 2010) 7 / 19	ave Witte Morris (Univ. of Lethbridge) Why arithmetic groups are lattices U of Chicago (June 2010) 8 / 19



Combine with decay of matrix coefficients:	Corollary
Theorem (Howe-Moore)	$SL(n, \mathbb{Z})$ is a lattice in $SL(n, \mathbb{R})$.
$\varphi, \psi \in L^2(G/\Gamma) \ominus constants \implies \lim_{g \to \infty} \langle \varphi, \psi \circ g \rangle = 0.$	Proof.
In fact, valid for vectors in any unitary representation of <i>G</i> .	We know $\exists u$ -invariant $\varphi \in L^1(SL(n, \mathbb{R}) / SL(n, \mathbb{Z})) \setminus \{0\}$. Howe-Moore: φ is constant.
Corollary (Mautner Phenomenon)	So $SL(n, \mathbb{R}) / SL(n, \mathbb{Z})$ has finite measure.
• <i>H</i> noncompact, closed subgroup of <i>G</i> ,	
• $\varphi \in L^p(G/\Gamma)$, <i>H</i> -invariant	Proof generalizes easily to general $G_{\mathbb{Z}}$.
$\Rightarrow \varphi$ is constant.	Just need to know $G/G_{\mathbb{Z}}$ is closed in $SL(n, \mathbb{R})/SL(n, \mathbb{Z})$.
	<i>Chevalley's Theorem: G</i> defined over Q
Proof.	$\Rightarrow \exists \varphi: SL(n, \mathbb{R}) \rightarrow SL(N, \mathbb{R})$ with
Wolog assume $p = 2$ and $\varphi \perp$ constants.	• $G = \text{Stab}(\text{vector in } \mathbb{Q}^N)$, and
$0 = \lim_{g \to \infty} \langle \varphi, \varphi \circ g \rangle = \lim_{h \to \infty} \langle \varphi, \varphi \circ h \rangle = \lim_{h \to \infty} \langle \varphi, \varphi \rangle = \ \varphi\ _2^2$	• $\varphi(\operatorname{SL}(n,\mathbb{Z})) \subset \operatorname{SL}(N,\mathbb{Z}).$
$\Rightarrow \varphi = 0$ is constant.	
ave Witte Morris (Univ. of Lethbridge) Why arithmetic groups are lattices U of Chicago (June 2010) 11 / 19	ave Witte Morris (Univ. of Lethbridge) Why arithmetic groups are lattices U of Chicago (June 2010) 12 / 19







References

Short proof: pp. 57-60 of

Alan Reid, *Hyperbolic Manifolds* (unpublished lecture notes). http://www.its.caltech.edu/~dmcreyn/HyperbolicManifolds.ps This must also be in

Colin Maclachlan and Alan Reid, *The Arithmetic of Hyperbolic 3-Manifolds*, Springer, New York, 2003. ISBN: 0-387-98386-4 MR1937957 (2004i:57021)

Dynamical proof: forthcoming chapter of my book-in-progress on *Introduction to Arithmetic Groups* http://people.uleth.ca/~dave.morris/books/ IntroArithGroups.html

Traditional proof: pp. 13–17 of Armand Borel, *Introduction aux Groupes Arithmétiques,* Hermann, Paris 1969. MR0244260 (39 #5577)

ave Witte Morris (Univ. of Lethbridge) Why arithmetic groups are lattices U of Chicago (June 2010) 19 / 19