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Abstract. SL(n, Z) is the basic example of a lattice in SL(7n, R), and a
lattice in any other semisimple Lie group G can be obtained by
intersecting (a copy of) G with SL(n, Z). We will discuss the main ideas
behind three different approaches to proving the important fact that the
integer points do form a lattice in G.
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Recall

I' is a lattice in G means
@ T' is a discrete subgroup of G, and
@ G/T has finite volume (e.g., compact)

M = hyperbolic 3-manifold of finite volume (e.g., compact)
< M = h3/T, where T = (torsion-free) lattice in SO(1, 3).

More generally:

locally symmetric space of finite volume
— (torsion-free) lattice in semisimple Lie group G

So it would be nice to have an easy way to make lattices. |
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SL(n,Z) is a lattice in SL(n, R)

SL(n, Z) is the basic example of an arithmetic group. )

More generally:

For G c SL(n,R) (with some technical conditions):
Gz = G nSL(n, Z) is an arithmetic subgroup of G.
Gz is a lattice in G.

Arithmetic groups are lattices. |

Converse if R-rank G > 2 (and T is irreducible).
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@ G is a (connected) semisimple Lie group
@ G- SL(n,R)
@ G is defined over Q

i.e. G is defined by polynomial equations with Q coefficients

i.e. Lie algebra of G is defined by linear eqs with Q coeffs

i.e. Gq isdensein G

i.e. Gz is Zariski dense in G  [if G has no compact factors]
i.e. Gz ¢ connected, proper subgroup of G

= Gz is a lattice in G.

@ It is obvious that Gy is discrete.

@ It is not obvious that G/Gz has finite volume.
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Gz is a lattice in G )
SL(2,7) is a lattice in SL(2, R).
Proof. @

Fundamental domain:

28

Vedaxdy (1
€ y2
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A short proof for lattices

SO(n, 1;7) is a lattice in SO(1,n).

B(X1,...,X4) = X2 + X3 + x5 - 7x3
= SO(B(X);Z) is a lattice in SO(B(xX)) = SO(3,1).
In fact, G/Gz is compact.

@ G =SO(B(x))
@ B(X) a (nondegenerate) quadratic form with Z coeffs
@ B(X) anisotropic: B(v) # 0 forv € (Z')*

Not so easy to prove.

= G /Gy is compact.
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G/Gz = SL(n,R)/SL(n, 2)
Proof has 2 parts:

@ G/Gyzis closed in SL(n,R)/SL(n,Z).
(True for any G defined over Q.)

@ G/Gy is precompact in SL(n, R)/SL(n,Z).

Part 1 of the proof.

Suppose g;y; — h with g; € G and y; € SL(n, 7).

For v € Z": B(y;v) = B(giyiv) — B(hv),
but B(y;v) € B(Z") C Z.

So B(y;v) = B(hv) is (eventually) constant: B(y;v) = B(yov).
For simplicity, assume y, = e.

Then B(hv) = B(y;v) = B(yov) = B(v).

So h € SO(B(X)) = G. O
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For Part 2 of the proof, we need a lemma: |

Mahler Compactness Criterion

Let C Cc SL(n, R).

The image of C in SL(n, R)/SL(n,Z) is precompact
< 0 is not an accumulation point of CZ".

Proof (=).

Suppose c,z, — 0 and ¢, Yy, — h. We may assume y, = e.

Then hz, ~ cyz, ~ 0. But hZ" is discrete. So z,, = 0. O
Converse is an exercise. (Try for n = 2 first.) )

Part 2 of the proof.

InVn € G(Z™)* = B(gnvs) = B(vy,) € B((2")*) € 7*
(because B(x) is anisotropic with Z coefficients)
= B(gnvn) + 0
= gnUn + O. O
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A dynamical proof that Gy is a lattice [Margulis]

Any line segment that reaches the
boundary of the large disk has only a
small fraction of its length inside the
tiny disk.

Theorem (Dani-Margulis)
@ x € SL(n,R)/SL(n, Z),
@ u € SL(n, R) unipotent
Le., u is conjugate to an element of N.

= 3 compact C C SL(n,R)/SL(n,Z),

k
liminf#{ke [O,R] | u*x e C} S

R—o0 R 0
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3 u-invariant @ € L'(SL(n,R)/SL(n,Z)) \ {0}.

SL(n,R)/SL(n,Z) can be covered by countably many cpct sets,
so 3 cpct C that works for all x in a set of positive measure.
Let #{ke[0,R]|lukxeC}

HALISRL uEatseh,

@(x) = liminfg .

[ @ = [Hminf X (xc + Xcou™ +xcou 2+ +xcou-k)
< liminf 5,r % (Xc + Xxcou ™ + xcou ™2+ -+ +xcouwk)
(“Fatou’s Lemma”)
=liminf% ([ xc + [ Xcou™' + [xcou™X)
=liminf % ([ xc + [ Xc + [ Xc + -+ + [ Xc)

:fXC
< o0,

And @ > 0 on a set of positive measure, so @ # 0in L. O
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Combine with decay of matrix coefficients: |
Theorem (Howe-Moore)
@,y € L2(G/T) o constants = éliim((p, Wog)=0.

In fact, valid for vectors in any unitary representation of G. J

Corollary (Mautner Phenomenon)

@ H noncompact, closed subgroup of G,
@ @ € L?(G/T), H-invariant

= @ is constant.

Wolog assume p = 2 and @ L constants.
0= lim(p,@ o g) = lim(p,@ ° h) = lim (¢, @) = l@ll3
= @ = 0 is constant. O
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SL(n, Z) is a lattice in SL(n, R).

We know 3 u-invariant ¢ € L' (SL(n, R)/ SL(n,Z)) \ {0}.
Howe-Moore: @ is constant.

So SL(n, R)/SL(n, Z) has finite measure. O

Proof generalizes easily to general Gz.
Just need to know G/Gz is closed in SL(n, R)/SL(n, Z).

Chevalley’s Theorem: G defined over Q
= 3 @: SL(n,R) — SL(N, R) with

@ G = Stab(vector in QV), and

e ¢ (SL(n,Z)) ¢ SL(N, Z).
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Proof of Howe-Moore Theorem.

Let {g,} C G, with [l gl — .
For simplicity, assume G = SL(2,R) and {g;} C [* *] = A.
Passing to subseq, wma g; converges weakly, to some E:
Giolw) - (E@|y) Vo,pel?
Also assume gjugj‘1 —eforueN = [1 ’1‘] So
(Eu | @) = lim{gju | @) = lim{(g;ug;") g;® | @)
=lim(g;p | @) =(E@ | @),

so Eu=E; ie., E(u-1Id) =0.
A u-inv’t vectors in L2 = img(u — Id) dense, so E = 0. 0
Actual proof:

@ FE annihilates img(u — Id).

@ E* annihilates img(v —Id) forv e N~ = [i 1].

@ E*E = EE*, so kerE = ker E*.

o img(u —Id) + img(v —1d) dense in L? © constants.

The traditional proof

SL(n, Z) is a lattice in SL(n, R).

Proof uses Iwasawa decomposition: G = KAN, where
@ K =S0(n),

@ A = diagonal matrices (with positive entries, so A is
connected),

@ N = upper triangular, with 1s on the diagonal.

(To show g = k an, use Gram-Schmidt orthogonalization.)
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For n = 2, let

oAczi[t 1/t]eA'0<tsc}
oNC={[(1) i]eN‘ |t|5c}

o (“Siegel set”) 5, = KA:N,
The picture of 5. in §? is:

Proof that I' = SL(2, 7Z) is a lattice:

Q@ 5. =SL(2,R) (3¢) / \
@ 5. has finite measure (Vc¢)
Generalize to SL(n, R). |

ain(g)
. . a (g)
Write g = kan,with a=a(g) =

ann(g)
Note that a1 (g) = llgeill.

an(g) <an(gy), Vy e SL(n,Z) = an(g) <2ax(g).

Forn=2: 5. =SL(2,R) ifc = 2.

Given g € SL(2,R). Assume wolog that g minimizes a;; on gI.
So a1 < 2as;.

Then 2 = 2a,; az; > a3y, so a; < /2.

Multiplying g by an element of Nz, assume |n(g)| < 1/2.

SOgEKAﬁN1/2C§C. ]
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For general n, let

an(g) <an(gy), Vy e SL(n,Z) = an(g) <2ax(g).

o Ac={acAlay<cairin, Vi}
o N.={neN||n-1dl<c}
o (“Siegel set”) 5. = KA:N, an = llgeill < llgezll =1l (kan)ez|l =|l anez| =|l alex + tey)l|
= |lages + tajiell = \/a§2 +t2a2, < \/a§2 +1a} 0
Corollary (of Key Lemma)
SL(n,R) = 5. SL(n, Z) forc = 2. This lemma is easy, but stating and proving an analogous
result for general G requires substantial algebra (the theory of
Proof'is by induction. J algebraic groups).
_ The big advantage of this proof is that it provides a coarse (or
S. has finite volume (for all c) approximate) fundamental domain that can be used to study

the topology and geometry of G/T.
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