Ergodic actions of semisimple Lie groups on compact principal bundles

Dave Witte

Department of Mathematics Oklahoma State University Stillwater, OK 74078

Abstract

Let $G = \operatorname{SL}(n, \mathbb{R})$. For any compact Lie group K, it is easy to find a manifold M, such that there is a volumepreserving, ergodic action of G on some smooth, principal K-bundle P over M. Can M be chosen independent of K? We show that if $M = H/\Lambda$ is a homogeneous space, the action of G on M is by translations, and there is a G-invariant connection on P, then P must also be a homogeneous space H'/Λ' . Consequently, there is a strong restriction on the groups K that can arise over this particular M. This is joint work (in progress) with Robert J. Zimmer. $G = \mathrm{SL}(3, \mathbb{R})$

 $= \{ g \in \operatorname{Mat}_{3 \times 3}(\mathbb{R}) \mid \det g = 1 \}$

= conn, noncpct, linear, simple Lie group

$\Gamma = \mathrm{SL}(3,\mathbb{Z})$

= lattice in G (such that G/Γ is not compact)

Thm (Margulis Superrigidity Thm). $\sigma: \Gamma \to \operatorname{GL}(\ell, \mathbb{R})$ homomorphism $\Rightarrow \sigma$ extends to a representation of G. I.e., $\exists \hat{\sigma}: G \to \operatorname{GL}(\ell, \mathbb{R}), \hat{\sigma}|_{\Gamma} = \sigma$ (modulo a finite group).

Defn. $P = flat \ principal \ K$ -bundle over G/Γ :

• K connected, linear Lie group

•
$$\sigma: \Gamma \to K$$

•
$$P = (G \times K) / \sim$$

 $(g\gamma, k) \sim (g, \sigma(\gamma)k)$

 $K \to P \xrightarrow{\pi} G/\Gamma$

Cor. Every flat principal K-bundle over G/Γ is trivial $(\cong (G/\Gamma) \times K)$.

Proof. Any princ bundle with a section is trivial.

$$P$$

$$\downarrow \pi \qquad \qquad \pi \circ \bar{\sigma} = \mathrm{Id}$$

$$G/\Gamma$$

$$P = (G \times K) / \sim (g\gamma, k) \sim (g, \sigma(\gamma)k)$$

Define $\bar{\sigma}: G / \Gamma \to P$ by $\bar{\sigma}(g) = (g, \hat{\sigma}(g)^{-1}).$

 $\bar{\sigma}$ is well defined:

$$\bar{\sigma}(g\gamma) = (g\gamma, \hat{\sigma}(g\gamma)^{-1})$$

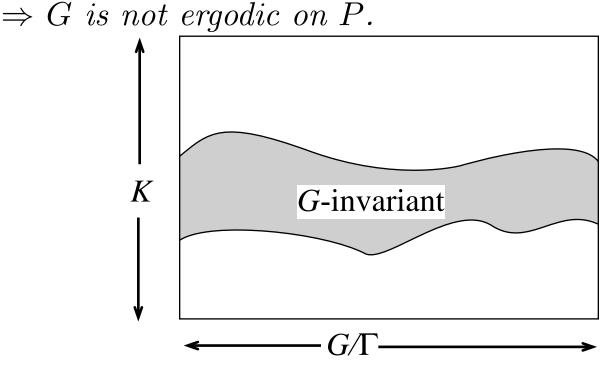
= $(g\gamma, \sigma(\gamma)^{-1}\hat{\sigma}(g)^{-1})$
~ $(g, \sigma(\gamma)\sigma(\gamma)^{-1}\hat{\sigma}(g)^{-1})$
= $\bar{\sigma}(g).$

$$\bar{\sigma}$$
 is a section of *P*:
 $\pi(\bar{\sigma}(x)) = \pi(x, \hat{\sigma}(x)^{-1})$
 $= x.$

Defn. $K \to P \xrightarrow{\pi} M$ principal K-bundle G acts on P (by bundle autos): g(kp) = k(gp). $P \xrightarrow{g} P$ $\downarrow \pi \qquad \downarrow \pi \qquad \pi(gp) = g \pi(p)$ $M \xrightarrow{g} M$

We usually assume the G-action on M is given.

Cor. G acts on principal K-bundle P over G/Γ (and K nontrivial)



I.e., $P = P_1 \cup P_2$ P_i is G-invariant, meas'ble, nonzero measure Thm (Zimmer Cocycle Superrigidity Thm).

- G acts on principal K-bundle P over M
- M compact manifold (or finite volume)
- G volume-preserving on M
- K not compact

 \Rightarrow G is not ergodic on P.

Problem. What if K is compact?

Thm (Margulis). As in Zimmer, but:

- G transitive on M $(=G/\Gamma')$
- K compact
- $\Rightarrow K \text{ belongs to a finite list of groups} \\ (depending only on the G-action on M).$

Question. ¿Is this true without transitivity?

Rem. No if M is a measure space, not a manifold:

• K_1, K_2, \ldots

•
$$M = M_1 \times M_2 \times \cdots$$

• $P'_i = P_i \times M_1 \times M_2 \times \cdots \hat{M}_i \cdots$

 P'_i is a principal K_i -bundle over M.

In fact: $\exists M, \forall \text{ compact Lie } K,$

G is ergodic on some princ K-bundle P over M.

$$Eg. \bullet G \hookrightarrow H' = \begin{pmatrix} 1 & \mathbb{R}^n & \mathbb{T} \\ 0 & \operatorname{SL}(n, \mathbb{R}) & \mathbb{R}^n \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bullet \Lambda' = \begin{pmatrix} 1 & \mathbb{Z}^n & 0 \\ 0 & \operatorname{SL}(n, \mathbb{Z}) & \mathbb{Z}^n \\ 0 & 0 & 1 \end{pmatrix} \text{ lattice in } H'$$

$$\bullet K = \begin{pmatrix} 1 & 0 & \mathbb{T} \\ 0 & \operatorname{Id} & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ cpct norm subgrp of } H'$$

$$\bullet H = H'/K \cong \operatorname{SL}(n, \mathbb{R}) \ltimes \mathbb{R}^{2n}$$

$$\bullet \Lambda = \operatorname{SL}(n, \mathbb{Z}) \ltimes \mathbb{Z}^{2n} \text{ lattice in } H$$

 $P = H'/\Lambda'$ is principal K-bundle over $M = H/\Lambda$. Moore Ergodicity Thm $\Rightarrow G$ is ergodic on P. **Thm.** $M = H/\Lambda$, G ergodic on P

• preserving a connection $\Rightarrow P = H'/\Lambda'$ with $H \cong H'/K$,
so $M \cong K \setminus H'/\Lambda'$.

Eq. $M = \operatorname{SL}(n, \mathbb{R}) / \operatorname{SL}(n, \mathbb{Z}) \Rightarrow$ • $H = \operatorname{SL}(n, \mathbb{R})$ • $\Lambda = \operatorname{SL}(n, \mathbb{Z})$ • $H' = H \times K$ • $\Lambda' = \{ (\lambda, \sigma(\lambda)) \mid \lambda \in \Lambda \}$ • $\sigma(\Lambda)$ dense in K($\Leftrightarrow G$ ergodic on P) \Rightarrow only finitely many choices for K [Margulis]. Instead of H/Λ , consider $M = C \setminus H/\Lambda$.

$$Eg. \bullet G = \begin{pmatrix} G & 0 \\ 0 & \mathrm{Id}_{n \times n} \end{pmatrix} \hookrightarrow \mathrm{SL}(n+3, \mathbb{R}) = H$$
$$\bullet \Lambda = \text{lattice in } H$$
$$\bullet P = H/\Lambda$$

•
$$K = \begin{pmatrix} \operatorname{Id}_{3 \times 3} & 0 \\ 0 & \operatorname{SO}(n) \end{pmatrix} \hookrightarrow H$$

(compact subgroup that centralizes G)
• $M = K \setminus H / \Lambda$

P is a principal K-bundle over M.

G-action on P factors thru to M: $g(Kh\Lambda) = K(gh)\Lambda$ (because G centralizes K).

Rem. Similar eg. for any compact Lie group K.

Cor. $M = C \setminus H/\Lambda$, G ergodic on P

• preserving a connection $\Rightarrow P = C' \setminus H' / \Lambda'$ with $M \cong K' \setminus H' / \Lambda'$ and $K \cong K' / C'$.

Possibilities for K determined by group theory.

Thm. $M = H/\Lambda$, G ergodic on P

• preserving a connection $\Rightarrow P = H'/\Lambda'$ with $H \cong H'/K$ so $M \cong K \setminus H'/\Lambda'$.

Proof. \mathfrak{h} = Lie algebra of vector fields on M associated to the H-action on M.

 $\overline{\mathfrak{h}}$ = lift of \mathfrak{h} to horizontal vector fields on P.

Assume the connection is flat,

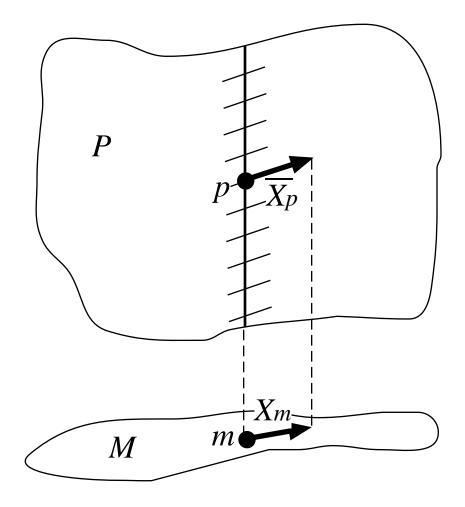
i.e., X, Y horizontal $\Rightarrow [X, Y]$ horizontal. Then $\overline{\mathfrak{h}}$ is a Lie algebra $(\operatorname{bcs} [\overline{X}, \overline{Y}] = \overline{[X, Y]}).$

• \overline{H} = corresponding Lie group of diffeos of P

• $H' = \overline{H} K.$

Since \overline{H} centralizes K, we know H' is a group and K is a normal subgroup.

H' is transitive on P, so $P = H'/\Lambda'$.



All that remains:

For G-equivariant diffeos, wish to show $G \subset H'$. (Then $\mathfrak{g} \subset \overline{\mathfrak{h}}$.) Suff to show \mathfrak{g} horizontal.

Fix $p \in P$. Define $\omega_p \colon \mathfrak{g} \to \mathfrak{k}$ by $\omega_p(X) = \text{vertical component of } X_p.$ (ω is the connection form.)

Flat $\Rightarrow \omega_p$ is a Lie algebra homomorphism: $\omega_p([X,Y]) = [\omega_p(X), \omega_p(Y)] - 2\Omega_p(X_p, Y_p).$

G noncompact, K compact

 $\Rightarrow \not\exists$ nontrivial homomorphism $G \to K$ $\Rightarrow \omega_p(\mathfrak{g}) = 0$

 $\Rightarrow \mathfrak{g}$ is horizontal.

What if the connection is not flat?

- $\Omega = curvature form of the connection:$
 - $\hat{\Omega}: P \to \operatorname{Hom}_{\mathbb{R}}(\mathfrak{h} \land \mathfrak{h}, \mathfrak{k}),$
 - $\hat{\Omega}_{gp}((\mathrm{Ad}_H g)X, (\mathrm{Ad}_H g)Y) = \hat{\Omega}_p(X, Y).$
- $\hat{\Omega}$ is constant, because:
 - $\hat{\Omega}$ is *G*-equivariant,
 - G is ergodic on P,
 - G-action on $\operatorname{Hom}_{\mathbb{R}}(\mathfrak{h} \wedge \mathfrak{h}, \mathfrak{k})$ is algebraic,
 - Borel Density Theorem.

$$X, Y \in \mathfrak{h}$$

$$\Rightarrow \omega_p([\overline{X}, \overline{Y}]) = -2\hat{\Omega}_p(X, Y)$$

is constant.
So $[\overline{\mathfrak{h}}, \overline{\mathfrak{h}}] \subset \overline{\mathfrak{h}} + \mathfrak{k}.$

 $\overline{\mathfrak{h}} + \mathfrak{k}$ is a Lie algebra: H' =corresponding Lie group of diffeos of P. All that remains: show \mathfrak{g} horizontal. Suff to show $\Omega_p(X_p, Y_p) = 0$ for all $X, Y \in \mathfrak{g}$. (Then ω_p is a homomorphism on \mathfrak{g} .)

$$D\Omega = 0$$

$$\Rightarrow \sum_{\substack{\text{cyclic} \\ \text{perms}}} \hat{\Omega}([X, Y], Z) = 0 \quad \forall X, Y, Z \in \mathfrak{h}$$

$$\Rightarrow \hat{\Omega} \text{ is Lie algebra 2-cocycle.}$$

Whitehead's Lemma: $H^2(\mathfrak{g}; V) = 0.$ $\exists \sigma \in \operatorname{Hom}_{\mathbb{R}}(\mathfrak{g}; \mathfrak{k}), \text{ s.t. } \forall X, Y \in \mathfrak{g},$ $\sigma([X, Y]) = \hat{\Omega}(X, Y)$ $= \sigma((\operatorname{Ad}_H g)[X, Y]).$

Therefore $0 = \sigma([G, \mathfrak{g}]) = \sigma(\mathfrak{g}).$

So $\hat{\Omega}(\mathfrak{g},\mathfrak{g}) = 0.$