1

$\mathrm{SL}_3(\mathbb{Z})$ cannot act continuously	Circles are very closely related to lines:
on the circle	• The universal cover of a circle is a line.
Dave Witte	• Removing a point from a circle leaves a line.
Department of Mathematics Oklahoma State University Stillwater, OK 74078	Thm (Ghys). Let Γ be an irreducible lattice in a connected semisimple Lie group G with finite center. Assume:
	1) \mathbb{R} -rank $G \geq 2$.
	2) No quotient of G is $\cong PSL_2(\mathbb{R})$.
	3) Γ cannot act faithfully on a finite union of lines.
	Then Γ cannot act faithfully on a circle.
	In fact, Ghys proved (without using (3)) that any action of Γ on a circle must have a finite orbit. Removing the finitely many points in this orbit leaves a finite union of line segments.

Therefore, it suffices to discuss actions on a line. In fact, we consider actions on a line segment I = [-1, 1].

All actions are assumed to be by homeomorphisms.

Also (for simplicity), all actions are assumed to be orientation-preserving

- I.e., if a < b, then $\gamma(a) < \gamma(b)$.
- In particular, $\gamma(-1) = -1$ and $\gamma(1) = 1$

Proposition (well known). I has no (nontrivial) orientation-preserving homeomorphism of finite order.

Proof. Let γ be a homeomorphism of [-1, 1].

Some point is moved by γ . It might as well be 0. Suppose $0 < 0^{\gamma}$.

$$\begin{array}{ccc} 0 & 0 \\ \end{array}$$

Then
$$0^{\gamma} < (0^{\gamma})^{\gamma}$$
 (bcs γ is orient-pres).
Hence $0 < 0^{\gamma^2}$.
Then $0^{\gamma} < (0^{\gamma^2})^{\gamma}$. I.e., $0^{\gamma^3} > 0^{\gamma}$. Hence $0 < 0^{\gamma^3}$.
...

No power of γ fixes 0.

No power of γ is trivial, so γ has infinite order.

Proof. $SL_2(\mathbb{Z})$ is generated by elements of finite order.SI The The The Comparison of the segments.Remark. $SL_2(\mathbb{Z})$ can act faithfully on a finite union of line segments.Price The <b< th=""><th>The (Witte). Let Γ be a finite-index subgroup of $L_3(\mathbb{Z})$. Then Γ cannot act faithfully on I. For. Let Γ be a finite-index subgroup of $SL_3(\mathbb{Z})$. Then Γ cannot act (nontrivially) on I. Froof. The kernel of the action is nontrivial. Froof. The kernel of the action is nontrivial. Fact. Every normal subgrp of Γ is either finite or nite-index. E.g., a theorem of Margulis on normal subgroups f lattices.] We conclude that the Γ-action factors through an</th></b<>	The (Witte). Let Γ be a finite-index subgroup of $L_3(\mathbb{Z})$. Then Γ cannot act faithfully on I . For. Let Γ be a finite-index subgroup of $SL_3(\mathbb{Z})$. Then Γ cannot act (nontrivially) on I . Froof. The kernel of the action is nontrivial. Froof. The kernel of the action is nontrivial. Fact. Every normal subgrp of Γ is either finite or nite-index. E.g., a theorem of Margulis on normal subgroups f lattices.] We conclude that the Γ -action factors through an
---	---

Let Γ be a finite-index subgroup of $SL_3(\mathbb{Z})$. We now show that Γ cannot act faithfully on I.

Recall the proof that a line segment has no symmetries of finite order.

"Suppose 0^{γ} is to the right of 0."

For any symmetry γ of I, we say that

- γ is **positive** if $0^{\gamma} > 0$
- γ is **negative** if $0^{\gamma} < 0$

[Actually: Well-order I. Consider $p^{\gamma} > < p$, where p is the first point that is moved by γ .]

Remark. Every nontrivial symmetry of a line segment is either positive or negative (not both).

- The product of positives is positive.
- The inverse of a positive is negative.

Thm (well known). The group of orientationpreserving homeomorphisms of I is **right orderable**.

(Define $\phi < \psi$ if $\phi \psi^{-1}$ is negative. Then $\phi < \psi \Leftrightarrow \phi \sigma < \psi \sigma$.)

Cor. Any group that acts faithfully on I must be right orderable.

Thm. $SL_3(\mathbb{Z})$ is not right orderable.

(Nor subgroups of finite index [Witte].)

Impossible to do:

- Every nonidentity element is either positive or negative (but not both).
- The product of positives is positive.
- The inverse of a positive is negative.

$$\begin{split} \operatorname{SL}_{3}(\mathbb{Z}) \text{ contains the discrete Heisenberg group} \\ H_{\mathbb{Z}} &= \begin{bmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix}, \qquad x = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad x = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\ y &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \qquad z = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\ xz &= zx, \ yz &= zy, \ xy &= yxz \end{split}$$
We may assume that x, y, z positive. Key Step. Either $x \gg z$ or $y \gg z$. Define $u \gg v$ if $u > v^{r}$ for all $r \in \mathbb{Z}$. Proof. Suppose $x \not\gg z$ and $y \not\gg z$, so $x, y < z^{r}$. $x^{a}y^{b} &= y^{b}x^{a}z^{ab}$ $(x^{-n}y^{-n})(x^{n}y^{n}) &= (x^{-n}y^{-n})(y^{n}x^{n}z^{n^{2}}) = z^{n^{2}}$ $(x^{-n}y^{-n}x^{n}y^{n})(z^{-2rn}) &= x^{-n}y^{-n}(yz^{-r})^{n}(xz^{-r})^{n}$ $< e \qquad \text{so } x^{-n}y^{-n}x^{n}y^{n} < z^{2rn}.$ Therefore, $z^{n^{2}} < z^{2rn}$. We actually have 6 copies of $H_{\mathbb{Z}}$ in $SL_3(\mathbb{Z})$: $SL_3(\mathbb{Z}) = \begin{bmatrix} * & 1 & 2 \\ 4 & * & 3 \\ 5 & 6 & * \end{bmatrix}$ 1,2,3 2,3,4 3,4,5 4,5,6 5,6,1 6,1,2 We have seen that $1 \gg 2$ or $3 \gg 2$. Assume that $3 \gg 2$. 2,3,4: because $2 \gg 3$, we have $4 \gg 3$. 3,4,5: because $2 \gg 3$, we have $5 \gg 4$. 4,5,6: because $4 \gg 5$, we have $6 \gg 5$. 5,6,1: because $5 \gg 6$, we have $1 \gg 6$. 6,1,2: because $6 \gg 1$, we have $2 \gg 1$. Therefore, $2 \gg 2$ — a contradiction.

A conceptual version of the proof. Let Φ be the root system of $SL_3(\mathbb{Q})$.	A similar proof works for $Sp(4, \mathbb{Z})$.
	The root system of type B_2 Either $\alpha_1 \ll \alpha_2 \ll \alpha_3$ or $\alpha_1 \ll \alpha_8 \ll \alpha_7$. We have $\alpha_1 \ll \alpha_1$ — a contradiction.
The root system of type A_2 $\alpha_i = \alpha_{i-1} + \alpha_{i+1}$ for $i = 1, 2,, 6$. Key Step. If $\alpha, \beta \in \Phi$, and $\alpha + \beta \in \Phi$, then $\alpha + \beta \ll \alpha$ or $\alpha + \beta \ll \beta$.	Thm (Witte). Let Γ be an irreducible lattice in a connected, semisimple Lie group G with finite center. If Γ contains a finite-index subgroup of either $SL_3(\mathbb{Z})$ or $Sp(4,\mathbb{Z})$, then Γ cannot act nontrivially on a line.
$\alpha_1 \ll \alpha_1$ — a contradiction.	Equivalent formulation: "If Γ is an arithmetic sub- group of a \mathbb{Q} -simple algebraic \mathbb{Q} -group of \mathbb{Q} -rank at least two, then"

References

E. Ghys: Actions de réseaux sur le cercle (preprint).

D. Witte: Arithmetic groups of higher Q-rank cannot act on 1-manifolds. *Proc. Amer. Math. Soc.* 122 (1994) 333–340.

