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Γ = SL(3, Z)

= {T ∈ Mat3(Z) | detT = 1 }

G = SL(3, R)

= {T ∈ Mat3(R) | detT = 1 }

Γ is a lattice in G

• Γ discrete

• G/Γ compact (or finite volume)

Ghys: every cont action of Γ on T has inv meas:

Thm (Ghys). φ: Γ → Homeo(T)

⇒ ∃ Γ-invariant prob measure on T.

Cor. φ: Γ → Homeo(T) ⇒ ∃ finite orbit.

Proof. Assume supp(µ) = T.

so we have a Γ-inv metric on T:

d(x, y) = µ
(
[x, y]

)
.

Then φ(Γ) ⊂ Isom+(T) ∼= T abelian.

Because Γ/[Γ,Γ] is finite, conclude φ(Γ) is finite.

So every orbit (in supp(µ)) is finite.
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Cor (Ghys). φ: Γ → Homeo(T) ⇒ ∃ finite orbit.

Thm (Thurston). Γ ⊂ Diff1
+(T)

• Γ has a fixed point

• Γ finitely generated

• Γ/[Γ,Γ] finite

⇒ Γ = e.

Cor (Ghys). φ: Γ → Diff1(T)

⇒ φ(Γ) is finite.

(Also proved by Burger & Monod if H2(Γ; R) = 0.)

Conj. Same conclusion for Γ → Homeo(T).

Thm (Witte). True if Γ ⊃ SL(3, Z) or Sp(4, Z).
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Thm (Ghys). φ: Γ → Homeo(T)

⇒ ∃ Γ-invariant probability measure on T.

Thm (Ghys). Let E be a circle bundle over G/Γ.

If action of G on G/Γ lifts to cont action on E,

then ∃ G-invariant probability measure on E.

Thm (Witte-Zimmer). E = circle bundle over M

• φ: G → Homeo(E → M)

• ∃ G-invariant prob meas µ on M

⇒ ∃ G-invariant probability measure ν on E

such that ν projects to µ on M .

Ghys’ proof generalizes in a natural way.

We give a more unified proof based on Ghys’ ideas

(plus a bit more Lie theory).

Rem. Only assume actions on M and E are

measurable, but continuous in the fiber direction.

Rem. The analogue of a fixed point of a Γ-action

is a choice of a point in each fiber of E.

I.e., G-invariant (measurable) section M → E.

May not exist!
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Eg. • G × T ⊂ SL(n, R) = H

• Λ = SL(n, Z) (lattice in H)

• E = H/Λ

• M = T\H/Λ = T\E

So E is a principal T-bundle over M .

G ⊂ Diff∞(E → M)

(because G commutes with T)

Suppose ∃ G-equivariant σ:M → E;

Then tσ is G-equivariant, for t ∈ T.

So E ∼= T × M (trivial G-action on T)

So G is not ergodic on E.

→←

Generalization of the Mautner phenomenon

(geodesic flow on surf of const neg curv is ergodic):

Thm (Moore Ergodicity Theorem).

A = noncompact, closed subgroup of H

⇒ A is ergodic on H/Λ
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Thm (Witte-Zimmer). E = circle bundle over M

• φ: G → Diff1(E → M)

• ∃ G-invariant prob meas µ on M

⇒ ∃ G-invariant prob meas ν on E

such that ν projects to µ on M

and ν is equivalent to Lebesgure measure.

Cor.

• M = ergodic G-space with inv prob meas

• α:G × M → Diff1(T) Borel cocycle

(I.e., α(gh, x) = α(g, hx)α(h, x))

⇒ α ∼ cocycle with values in Isom(T)

(as a cocycle into Homeo(T)).
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Thm (Thurston). Γ ⊂ Diff1
+(T)

• Γ has a fixed point

• Γ finitely generated

• Γ/[Γ,Γ] finite

⇒ Γ = e.

Γ has a fixed point on T ⇒ Γ acts on I = [0, 1].

Analogue:

Thm (Witte-Zimmer). G ⊂ Diff1
+(M × I → M)

• ∃ G-inv prob meas µ on M

⇒ ∃ G-inv prob meas ν on M × I,

such that ν is equiv to µ × Leb.

Zimmer has a nice proof of Thurston’s Theorem,

using the fact that Γ has Kazhdan’s property (T ):

• 〈γ1, . . . , γr〉 = Γ

• ρ: Γ → U(H) unitary representation

• ∀ε > 0, ∃v ∈ H, ∀i, ‖ρ(γi)v − v‖ < ε‖v‖
⇒ ∃w ∈ H \ {0}, ∀γ ∈ Γ, ρ(γ)w = w.

This proof generalizes to our setting.
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Thm. Γ ⊂ Diff1
+(I), Kazhdan ⇒ Γ = e.

Proof. Suffices: the fixed pts are dense in I.

Spse not: assume no fixed pts in interior of I.

Unitary representation ρ of Γ on L2(I):(
ρ(γ)f

)
(t) = [γ′(t)]1/2f(γ−1t).

Γ/[Γ,Γ] finite

⇒ any homomorphism Γ → R is trivial

⇒ γ′(0) = 1, ∀γ ∈ Γ.

Choose a small interval J containing 0.

Let χ = characteristic function of J .

Action is C1 ⇒ γ′
i(t) ≈ 1 for t ∈ J and 1 ≤ i ≤ r

⇒ ρ(γi)χ ≈ χ

⇒ ∃ ρ(Γ)-invariant φ ∈ L2(I) [Kazhdan]

Then |φ|2dt is a Γ-invariant measure on I,

so every point in its support is fixed by Γ.

→← no fixed pts in interior of I.
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Thm (Ghys). φ: Γ → Homeo(T)

⇒ ∃ Γ-invariant prob measure on T.

Proof. Let

• Prob(T) = {prob meas on T}

• P =








∗ 0 0
∗ ∗ 0
∗ ∗ ∗








Fact. ∃ Γ-equi (meas’ble) Ψ:G/P → Prob(T).

[Furstenberg boundary theory]

I.e., Ψ(γgp) = γΨ(g), for γ ∈ Γ, g ∈ G, p ∈ P .

We wish to show Ψ is essentially constant.

(Then Ψ(G/P ) must be a fixed point:

i.e., an invariant measure.)

Case 1. Assume Ψ(x) has no atoms, for a.e. x.

Case 2. Assume Ψ(x) ∈ T, for a.e. x.



13

Case 1. Assume Ψ(x) has no atoms, for a.e. x.

• Prob0(T) = {atomless prob meas on T}
• metric D(µ1, µ2) = supJ |µ1(J) − µ2(J)|
• Ψ2: (G/P )2 → Prob0(T)2

• A =








∗ 0 0
0 ∗ 0
0 0 ∗








Moore Ergodicity Theorem

⇒ A is ergodic on G/Γ

⇒ no nonconstant A-inv funcs on G/Γ

⇒ no nonconstant (A,Γ)-inv funcs on G

⇒ no nonconstant Γ-inv funcs on G/A

⇒ no nonconstant Γ-inv funcs on (G/P )2.

D is Homeo(T)-invariant

⇒ D ◦ Ψ2 is Γ-invariant

⇒ D ◦ Ψ2 is constant.

(D ◦ Ψ2)(x, x) = 0

⇒ D ◦ Ψ2 ≡ 0

⇒ Ψ is constant.
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Case 2. Assume Ψ(x) ∈ T, for a.e. x.

L =




a b 0
c d 0
0 0 1/(ad − bc)


,

B = L ∩ P =




a 0 0
c d 0
0 0 1/(ad)




Recall. GL(2, R) =

{
g =

(
a b
c d

) ∣∣∣∣ det g 6= 0

}

acts on R ∪ {∞} ∼ T by gx =
ax + b

cx + d
.

• This action is triply transitive.

• StabGL(2,R)(0) = {b = 0} ≈ B.

So L is triply transitive on L/B.

Ghys: contrast triple transitivity of L with the

fact that Homeo+(T) is not triply transitive,

to show that Ψ(g) = Ψ(gL).

The L’s generate G ⇒ Ψ is constant.
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Define:

• X =

{
(x1, x2, x3)

∈ (G/B)3

∣∣∣∣
x1L = x2L = x3L

xi 6= xj

}

• Ψ3: X → T3

• Z =




a 0 0
0 a 0
0 0 1/a2


,

G is transitive on X

and StabG

(
([l1], [l2], [l3])

)
⊃ Z is not compact

⇒ no nonconstant Γ-inv funcs on X

Ψ3(Γ-orbit) ⊂ Homeo+(T)-orbit

⇒ Ψ3:X → T3/Homeo+(T) is Γ-invariant

⇒ Ψ3(X) ⊂ single Homeo+(T) orbit O in T3

Since Ψ3 is S3-equivariant [symmetric group],

conclude that O is invariant under action of S3.

But Homeo+(T) preserves the circular order:

conclude that O = {(t, t, t)}.

So Ψ(x1) = Ψ(x2) whenever x1 ∈ x2L.

Thus, Ψ(x1) = Ψ(x1L).
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Lem. G is transitive on X.

Proof. Given x, y ∈ X.

G is transitive on G/L,

so we may assume x1, y1 ∈ L.

Then, from the defn of X, we conclude xi, yi ∈ L.

Because L is triply transitive on L/B,

∃l ∈ L, lx = y.

Notation. Let S = StabG

(
([l1], [l2], [l3])

)
.

Lem. S ⊃ Z.

Proof. z([l1], [l2], [l3]) = ([zl1], [zl2], [zl3])

= ([l1z], [l2z], [l3z])

= ([l1], [l2], [l3]) (because z ∈ B)
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Lem. 6 ∃ nonconstant Γ-inv funcs on X

Proof. Let S = StabG

(
([l1], [l2], [l3])

)
.

Moore Ergodicity Theorem

⇒ S is ergodic on G/Γ

⇒ no nonconstant S-inv funcs on G/Γ

⇒ no nonconstant (S,Γ)-inv funcs on G

⇒ no nonconstant Γ-inv funcs on G/S

⇒ no nonconstant Γ-inv funcs on X
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