



	, <u> </u>
Superrigid subgroups	\mathbb{Z}^{k} i
Proposition	
Group homomorphism $\varphi \colon \mathbb{Z}^k \to \mathrm{GL}_d(\mathbb{R})$	•
$\Rightarrow \varphi$ virtually extends to homo $\hat{\varphi} \colon \mathbb{R}^k \to \mathrm{GL}_d(\mathbb{R})$.	۰
"Homomorphisms defined on \mathbb{Z}^k virtually extend to be defined on \mathbb{R}^k ." This means \mathbb{Z}^k is <i>superrigid</i> in \mathbb{R}^k .	
Generalize to nonabelian groups.	Def H is
	repl and
Margulis Superrigidity Theorem ~1973 Every lattice in $SL_n(\mathbb{R})$ is superrigid if $n \ge 3$. (up to bounded error — i.e., modulo compact subgroup)	Wh Proj
Margulis Arithmeticity Theorem ~ 1973 Every lattice in $SL_n(\mathbb{R})$ is "arithmetic" if $n \ge 3$.	Ster
Provides a list of all the lattices in $SL_n(\mathbb{R})$: all the "periodic tilings" or "crystals"	If it
Can replace $SL_n(\mathbb{R})$ with any simple Lie grp except $SO(1, n)$ or $SU(1, n)$.	So
Key. Show matrix entries of <i>H</i> are in \mathbb{Z} for some embedding $\underset{\times \text{compact}}{\text{SL}_n(\mathbb{R})} \hookrightarrow \text{SL}_N(\mathbb{R}).$	Sup The SL _n
Bounded generation <i>Note:</i> Invertible matrix $\rightsquigarrow I$ by row operations. $g \in SL_n(\mathbb{Z}) \rightsquigarrow I$ by integer (\mathbb{Z}) row ops. $\begin{bmatrix} 9 & 20 \\ 49 & 109 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 9 & 20 \\ 4 & 9 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	E 2
Theorem (Carter-Keller 1983) <i>Matrix in</i> $SL_3(\mathbb{Z})$ <i>needs bdd # of</i> \mathbb{Z} <i>row ops.</i> (< 50)	
But no bound on # for mats in $SL_2(\mathbb{Z})$.	
This implies $\mathrm{SL}_3(\mathbb{Z})$ is superrigid (and Cong Subgrp Prop).	
Converse? Is every lattice in SL ₃ (\mathbb{R}) <i>bddly gen'd</i> ? $\downarrow \langle h_1 \rangle \langle h_2 \rangle \cdots \langle h_r \rangle = H$?	

\mathbb{Z}^{k} is superrigid in \mathbb{R}^{k}		
\mathbb{Z}^k is a (uniform) <i>lattice</i> in \mathbb{R}^k	×.	
• \mathbb{R}^k is a connected group ("Lie group")		
• \mathbb{Z}^k is a discrete subgr	oup	
• all of \mathbb{R}^k is within a b $\exists C, \forall x \in \mathbb{R}^k, \exists r$	ounded distance of \mathbb{Z}^k $n \in \mathbb{Z}^k$, $d(x, m) < C$	
All of \mathbb{R}^k	• • • • • • •	
is within		
$\sqrt{k}/2$ of Z	k k	
Definition.	• • • • • • •	
<i>H</i> is a <i>lattice</i> in <i>G</i> :		
replace \mathbb{Z}^k with H ,		
and \mathbb{R}^k with <i>G</i> .	• • • • • •	
Why superrigidity implies arithmeticity Prop. H = superrigid lattice in SL _n (\mathbb{R})		
$\Rightarrow \sim \text{ every matrix entry is in } \mathbb{Z}.$		
Step 1. Show $h_{i,j}$ is not transcendental		
If it is, then \exists field auto φ of \mathbb{C} with $\varphi(h_{i,j}) = ???$		
Define $\widetilde{\varphi} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \varphi(a) & \varphi(b) \\ \varphi(c) & \varphi(d) \end{pmatrix}.$		
So $\widetilde{\varphi}$: $H \to \operatorname{GL}_n(\mathbb{C})$ is a group homomorphism.		
Superrigidity: $\tilde{\varphi}$ extends to $\hat{\varphi}$: $SL_n(\mathbb{R}) \to GL_n(\mathbb{C})$.		
There are uncountably many different φ 's, but $\mathrm{SL}_n(\mathbb{R})$ has $< \infty$ <i>n</i> -dim'l rep'ns (up to change of basis). $\rightarrow \leftarrow$		
🔋 A. K. Dewdney, Mather	natical Recreations:	

- A. K. Dewdney, Mathematical Recreations: the theory of rigidity, or how to brace yourself against unlikely accidents, *Scientific American*, May 1991, 126–128. http://triamant.info/html_e/history.html
- J. Graver, B. Servatius, & H. Servatius, *Combinatorial Rigidity*, Amer. Math. Soc., Providence, RI, 1993. MR 1251062
- D.W.Morris: What is a superrigid subgroup?, in: *Communicating Mathematics*, Amer. Math. Soc., Providence, RI, 2009, pp. 189-206. MR 2513447 http://arxiv.org/abs/0712.2299