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1. Some arithmetic groups that

cannot act on the circle

Abstract. It is known that finite-index sub-

groups of the arithmetic group SL(3,Z) have no

interesting actions on the circle. This naturally

led to the conjecture that most other arithmetic

groups (of higher real rank) also cannot act on

the circle (except by linear-fractional transfor-

mations). Theorems of É. Ghys and A. Navas es-

tablish that the conjecture is true if we assume

that the maps involved are differentiable. (We

would prefer to assume only that they are con-

tinuous.) Both of these proofs are elegant, and

they each illustrate a fundamental technique

in the theory of lattice subgroups: Ghys uses

the Furstenberg boundary, and Navas relies on

Kazhdan’s property T .

Transformation grps. Given grp Γ , cpct mfldM .

What are the actions of Γ on M?

I.e., what are homos φ: Γ → Homeo+(M)?

Simplest case: Assume dimM = 1. So M = S1.

In my work, Γ is an arithmetic group:

Γ = SL(3,Z) = {3×3 integer matrices of det 1 }
(or subgroup of finite index)

Or Γ = SL
(
2,Z[

√
2]
)

Or Γ = SL
(
2,Z[α]

)
α = real, irrational algebraic integer.

Or Γ = SL
(
2,Z[1/2]

)
Or 1/2� 1/r , r > 1.

But Γ ≠ SL(2,Z), some other “small” grps.

(Assume Γ is irred latt in G, R-rankG ≥ 2.)

(Our theorems assume Γ not cocompact)

Eg. SL(2,Z) (≈ free grp) has many actions on S1.

Γ = SL(3,Z) or SL
(
2,Z[

√
2]
)

or SL
(
2,Z[1/2]

)
.

Eg. linear-fractional transformations
ax + b
cx + d

provide action of SL(2,R) on R ∪{∞} ∼ S1.

So SL
(
2,Z[

√
2]
)

acts by linear-fractionals.

Conj. φ: Γ → Homeo(S1), not ≈ lin-frac

⇒ Γφ is finite.

Rem. Let Γ = π1(hyper) (and go to fin-ind subgrp).

Thurston conjecture: ∃σ : Γ → Z.

Since Z ↩ Homeo(S1), then Γ acts on S1.

Rem (Margulis Normal Subgrp Thm).Γφ infinite ⇒ ker(φ) finite.

Hence, we assume φ: Γ ↩ Homeo(S1).
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Evidence for the conjecture.

φ: Γ → Homeo(S1) (not ≈ lin-frac) ⇒ Γφ is finite.

Thm (Witte). Γφ finite if Γ = SL(3,Z)
or Γ = Sp(4,Z) or contains either.

I.e., Q-rank(Γ) ≥ 2.

Thm (Ghys). Γφ has a fixed point (or a finite orbit ).

(Proof uses ergodic theory and amenability

— or the Furstenberg boundary .)

Combine with Reeb-Thurston Stability Thm:

Cor (Ghys). Γφ finite if φ: Γ → Diff1(S1).

Thm (Navas). Γφ finite if φ: Γ → Diff2(S1).
(Only requires that Γ has Kazhdan’s property T ,

not that Γ is arithmetic — or linear.)

Thm (Lifschitz-Morris). Γφ finite

if Γ = SL
(
2,Z[

√
2]
)

or SL
(
2,Z[1/2]

)
.

(Proof uses bounded generation.)

The theorem of Navas.Γ ⊂ Diff2(S1), Kazhdan’s property T ⇒ Γ finite.

Defn. Γ has Kazhdan’s property T :

H1(Γ ,H ) = 0, ∀ unitary Γ -module H .

I.e.: H = L2(S1 × S1) (square-integrable funcs).

H is Hilbert space (normed∞-dim’l vec space)

‖F‖2 =
∣∣∣∣∫
S1×S1

F(s, t)2 ds dt
∣∣∣∣

Spse Γ acts on H by unitaries (‖Fg‖ = ‖F‖).
α: Γ →H is a 1-cocycle

(α(gh) = α(g)h +α(h))
⇒ α is a coboundary

(∃v ∈H , α(g) = vg − v).

Thm (Navas). Γ ⊂ Diff2(S1), property T
⇒ Γ finite.

Proof. For F ∈ L2(S1 × S1) and g ∈ Γ ,
Fg(r , s) = F(g(r), g(s)) |g′(r)|1/2 |g′(s)|1/2.

This is unitary rep’n of Γ on L2(S1 × S1).

Let F(r , s) = f(r − s) on S1 × S1,

where f(x) = 1
x
+ C∞.

• F ∉ L2(S1 × S1) (bcs 1/x singularity)

• ∀g ∈ Diff2(S1), Fg − F is bounded.

Define α(g) = Fg − F ∈ L2(S1 × S1)).

α is a cocycle, so, by Kazhdan’s Property T ,

∃ v ∈ L2(S1 × S1), Fg − F = vg − v .

Then

• F − v is Γ -invariant;

• F−v ∉ L2(S1×S1). (1/x singular on diag)

a

b

c
nR

g  (x)n

Let µ = (F − v)2 dr ds, so

• µ is Γ -invariant measure on S1 × S1;

• µ(rect) =
{∞ if touches diagonal

finite if away from diagonal

Choose g ∈ Γ , has a fixed pt.

Pass to triple cover, so g has ≥ 3 fixed points:

g(a) = a, g(b) = b, g(c) = c.

For x ∈ (a, b), limgn(x) =
{
b as n→∞
a as n→ −∞

Rn =
(
a,gn(x)

) × (b, c)
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Rn =
(
a,gn(x)

)× (b, c).
g(Rn) =

(
a,gn+1(x)

)× (b, c) = Rn+1.

a

b

c
nR

g  (x)n

Rn+1

g    (x)n+1

Rn+1

g    (x)n+1

Rn+1

g    (x)n+1

g(Rn) = Rn+1

⇒ µ(Rn) = µ(Rn+1)
⇒ µ(Rn+1 − Rn) = 0

⇒ µ
( ∞∪
n=−∞ (Rn+1 − Rn)

)
= 0

⇒ µ
(
(a, b)× (b, c)) = 0

→← (a, b)× (b, c) touches the diagonal.

[based on ideas of Pressley-Segal and Reznikov]

The theorem of Ghys. Let Γ ≈ SL(3,Z),Γ ↩ Homeo(S1) ⇒ ∃ fixed pt (or a finite orbit).

Proof uses ergodic theory (meas’ble dynamics).

• G = SL(3,R),
• F = flag variety = { (�,Π) | � ⊂ Π ⊂ R3 }.

Theory of Furstenburg bdry:

∃ ψ: F → Prob(S1), Γ -equivariant, meas’ble.

Hard case: ψ(x) is purely atomic.

Assume ψ: F → S1, so −→ψ: F3 → (S1)3.

Circular order: (S1)3 = X+ � X− � {singular}.
X+ is invariant under Homeo+(S1), so

−→ψ−1(X+) is Γ -invariant subset of F3.

Contradiction if � Γ -invariant subsets.

More precisely, if Γ is ergodic on F3;

i.e., A Γ -inv’t ⇒ µ(A) = 0 or µ(F3 �A) = 0.

Not ergodic — Ghys works with fibered product{
(F1,F2,F3) ∈ F3 | Π1 = Π2 = Π3

}
.

G = SL(3,R), F = { (�,Π) | � ⊂ Π ⊂ R2 }.
G is transitive on F. So F � G/P ,

where P = StabG(flag) =
[∗ ∗ ∗

∗ ∗
∗

]
.

Moore Ergodicity Thm. Γ is ergodic on G/H
⇔ H is not compact.

So Γ is ergodic on F. (a.e. Γ -orbit is dense.)

Cor. Γ is ergodic on F2 = F× F.

Proof. Stab(F1,F2) =
[∗

∗
∗

]
. Not cpct.

Cor. Γ is not ergodic on F3.

Proof. Stab(F1,F2,F3) = {±Id} finite.

Cor. Erg on
{
(F1,F2,F3) ∈ F3 | Π1 = Π2 = Π3

}
.

Proof. G is transitive on {nonsingular} ,

StabG(F1,F2,F3) =
[
λ 0 ∗
0 λ ∗
0 0 1/λ2

]
not cpct.

Furstenberg boundary theory. (amenability)

∃ ψ: F → Prob(S1) Γ -equivariant (and meas’ble).

Becausee F = G/P , we want Ψ :G → Prob(S1),Γ -equivariant, s.t. Ψ(gp) = Ψ(g), (meas’ble).

Let E = { Γ -equi Ψ :G → Prob(S1) }.
• Prob(S1) is a compact, convex set (weak∗)

⇒ E is a compact, convex set.

• G acts on E by translation.

We want P to have a fixed point in E.

Defn. group H is amenable:

• H acts continuously on cpct metric spaceX
⇒ ∃ H-invariant prob meas on X.

• H acts linearly on cpct convex set X
⇒ ∃ fixed point in X.

Prop. Every abelian group is amenable.

Cor. Every solvable group is amenable.

In particular, P is amenable.
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X = compact convex subset of Banach space V .

Lem. T :V → V linear (bdd), X T-invariant

⇒ T has a fixed point in X.

Proof. (Tv + T 2v + · · · + Tnv)/n
has a convergent subseq. Limit is fixed point.

Cor. Abelian groups are amenable.

Proof. Spse T1 and T2 commute, Fi = {fixed pts}.
F1 cpct, convex, T2-inv’t⇒ T2 has fixed pt in F1.

Therefore T1 and T2 have a common fixed point.

Cor. P is amenable.

Proof. Let P2 =
[

1 ∗ ∗
0 1 ∗
0 0 1

]
, P3 =

[
1 0 ∗
0 1 0
0 0 1

]
.

P3�P2 ⇒ F3 is P2-invariant. (P3 abel⇒ F3 ≠∅.)

P2/P3 abelian ⇒ P2 has fixed point in F3.

F2 ≠∅ & P2 � P & P/P2 abelian

⇒ P1 has a fixed point in F2.
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2. Bounded generation of SL(n,Z)

Abstract. If T is an invertiblen×nmatrix, then
a fundamental theorem of undergraduate linear
algebra states that T is a product of elementary
matrices. More precisely, it is not difficult to see
that T is a product of n2 (or less) elementary
matrices. However, these results assume that
the matrix entries belong to a field (such as C
or R). The situation is more interesting if we re-
quire the entries of all of our matrices to be inte-
gers, because this makes it much more difficult
to show that there is a number N (analogous
to n2), such that every invertible n × n matrix
is a product of N (or less) elementary matrices.
For n ≥ 3, a proof can be given that uses al-
gebraic methods from the proof of the Congru-
ence Subgroup Property, and then applies the
Compactness Theorem of First-Order Logic. On
the other hand, no such N exists for the 2 × 2
matrices.

Thm (Carter-Keller, Liehl, Carter-Keller-Paige).Γ = SL(3,Z), SL
(
2,Z[

√
2]
)
, SL

(
2,Z[1/2]

)
,

⇒ Γ is bddly generated by elem matrices.

Rem. Also true for

• SL(n,O) with n ≥ 3 [C-K],

• SL(2,O) if O has ∞ units [C-K-P],

• G(Z) if G is Q-split, Q-rank G ≥ 2 [Tavgen],

• some orthog grps [Erovenko-Rapinchuk].

Consequences (next lecture).

• Γ is superrigid (<∞ irred reps of each dim)

• Γ has the Congruence Subgroup Property

• SL(3,Z) has property T (with explicit ε)
• (Ghys’ Thm) action of Γ on S1 has fixed pt

(or finite orbit) if H2(Γ ; R) = 0

• [Lifschitz-Morris] Γ cannot act on S1

(except ≈ lin-frac)

Thm (Carter-Keller). Γ = SL(3,Z) is

boundedly generated by elementary matrices.

Eg. Elementary matrices:1 25 0
0 1 0
0 0 1

 ,
 1 0 0

0 1 0
−8 0 1

 ,
1 0 0

0 1 16
0 0 1

.

Recall. Every invertible matrix can be reduced

to Id by elementary column operations.

Prop. T ∈ SL(3,Z) ⇒ T � Id by Z column ops.

Eg.

[
13 5
31 12

]
�

[
3 5
7 12

]
�

[
3 2
7 5

]

�

[
1 2
2 5

]
�

[
1 0
2 1

]
�

[
1 0
0 1

]
.

Cor. T ∈ SL(3,Z) ⇒ T = product of elem mats.

Thm (Carter-Keller). T = prod of 48 elem mats.

Remark. No such bound exists for SL(2,Z):
SL(2,Z) not bdd gen by elem mats.

July 10, 2005
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Thm (Liehl). SL
(
2,Z[1/2]

)
bdd gen by elems.

I.e., T � Id by Z[1/2] col ops, # steps is bdd.

Easy proof. Assume Artin’s Conjecture.

Eg. 2 is a primitive root modulo 13:

{2k} = {1,2,4,8,3,6,12,11,9,5,10,7}.
Complete set of residues.

Conj (Artin). ∀r ≠ ±1, perfect square,

∃ ∞ primes q, s.t. r is prim root modulo q.

Assume ∃q in every arith progression {a+nb}.[
a b
c d

]
q = b + ka prime, 2 is prim root[

a q
∗ ∗

]
2� ≡ a (mod q); 2� = a+ k′q[

2� q
∗ ∗

]
2k unit ⇒ can add anything to q[

2� 1
∗ ∗

]
�

[
1 1
∗ ∗

]
�

[
1 0
∗ 1

]
�

[
1 0
0 1

]
.

How to prove bounded generation [C-K-P].

• Compactness Theorem of 1st-order logic

• Mennicke symbols (Algebraic K-Theory)

Eg. F field⇒ T ∈ SL(n, F) is prod of elem mats.

I.e., ∀field F , ∀T ∈ SL(n, F), ∃r ∈ N,

T is a product of r elementary matrices.

Cor (by applying the Compactness Theorem).

∃r ∈ N, ∀field F , ∀T ∈ SL(n, F),
T is a product of ≤ r elementary matrices.

I.e., SL(n, F) has bdd gen by elem mats.

(& uniform for all fields—deps only on n.)

Key. Fields are defined by 1st-order statements.

• multiplication is commutative:

∀x,∀y, (xy = yx)
• every nonzero element is a unit

∀x, (x ≠ 0 → ∃y, (xy = 1)
)

• the ring axioms (comm, assoc, distrib, . . . )

Recall. 1st-order statements (in ring theory)

only use ∀,∃, and,or,→,¬,+,−,0,1
(and add’l consts c1, c2, . . ., relns Ri)

• e.g., every 2-generated ideal is principal

∀x1,∀x2,∃y, (x1A+ x2A = yA)
• e.g., every finitely generated ideal is princ

(use a list of axioms, not a single one)

• not: every ideal is principal

• (xi,j) is an elementary matrix

• (xi,j) is a product of ≤ 2 elementary mats

∃elem mats (yi,j), (zi,j),
xi,j = yi,1z1,j + · · · +yi,nzn,j

• every T ∈ SL(n,A) is prod of≤ r elem mats

• not: SL(n,A) gen’d by elem mats

(or boundedly generated by elem mats)

• (ci,j) is a product of ≤ r elem mats

• (ci,j) is not a product of ≤ r elem mats

• (ci,j) is not a product of elem mats

Gödel Completeness Thm. Suppose

• ϕ1, ϕ2, . . . 1st-order, and

• � ring satisfying every ϕi.

Then one can prove a contradiction (0 ≠ 0) from

axioms ϕ1, ϕ2, . . . , together with ring axioms.

Proof (finite length) refers to finitely many ϕi:

Compactness Thm. Suppose

• ϕ1, ϕ2, . . . 1st-order, and

• � ring satisfying every ϕi.

Then ∃r ∈ N, � ring satisfying ϕ1, . . . ,ϕr .

Cor. ∃r , ∀field F , ∀T ∈ SL(n,A),
T is prod of ≤ r elem mats.

Proof. ϕ0: field axioms.

ϕi: (ck,�) ∈ SL(n, F), not prod ≤ i elem mats.

� ring sat every ϕi. So ∃r , no field sats ϕr .



3

Compactness Thm.

� ring satisfying ϕ1,ϕ2, . . . (1st order ).

⇒ ∃r ∈ N, � ring satisfying ϕ1, . . . ,ϕr .

Defn. E(n,A) = 〈elem mats in SL(n,A)〉.
Cor. Spse Φ is a set of 1st-order ring axioms,

s.t. ∀A sat Φ, E(n,A) = SL(n,A).
Then ∀A sat Φ, SL(n,A) bdd gen by elems.

Proof. ϕi: (ck,�) ∈ SL(n,A), not prod≤ i elems.

Not bdd gen ⇒ Φ ∪ {ϕ1, . . . ,ϕr} consistent

⇒ Φ ∪ {ϕ1,ϕ2, . . .} consistent →←
Cor. Spse Φ is a set of 1-st order ring axioms,

s.t. ∀A sat Φ, E(n,A) ≈ SL(n,A). (finite ind)

Then ∀A sat Φ, SL(n,A) bdd gen by elems (≈).

Thm (Carter-Keller). SL(3,Z) bdd gen by elems.

Method of proof. 〈elem mats〉 fin ind in SL(3,Z).
Only use 1st-order properties of Z in the proof.

Thm (Carter-Keller). SL(3,Z) bdd gen by elems.

Prove: E(3,Z) finite index in SL(3,Z).
Let C = CZ = SL(3,Z)/E(3,Z). (finite??)

Thm. A commutative ⇒ E(3, A) � SL(3, A).
So C is a group. In fact, C is abelian.

Step 1. C has exponent dividing 12 (i.e. x12 = e).
Step 2. C is cyclic.

Let W = WZ = { (a, b) ∈ Z2 | gcd(a, b) = 1 }
= {1st rows of elements of SL(2,Z)}.

Define
[ ]

:W → C by
[
b
a

]
≡
a b 0
∗ ∗ 0
0 0 1

.

•
[ ]

is well defined (easy) and onto (SR2).

• (MS1)
[
b + ta
a

]
=
[
b
a

]
=
[

b
a+ tb

]
.

• (MS2a)
[
b1b2

a

]
=
[
b1

a

] [
b2

a

]
(need n ≥ 3).

Step 2. C is cyclic.

Given
[
b1

a1

]
,
[
b2

a2

]
(nontrivial).

Dirichlet: ∃ large prime p ≡ b1 (mod a1).[
b1

a1

]
=
[
p
a1

]
; wma b1 = p prime.

In fact, wma all ai, bi are large primes (b1 ≠ b2).

CRT: ∃q, s.t. q ≡ ai (mod bi); wma a1 = q = a2.

(Z/qZ)× cyclic ⇒ ∃b, ei, s.t. bi ≡ bei (mod q).[
bi
ai

]
=
[
bi
q

]
=
[
bei
q

]
=
[
b
q

]ei
∈
〈[

b
q

]〉
.

Any two elts of C are in same cyclic subgrp.

So C is cyclic.

Note: Since C12 = e, only need (Z/qZ)× cyclic

modulo 12th powers.

This is a 1st-order statement:

∃x,∀y,∃z, (y = z4 or xz4 or · · · or x11z4).

Lem.
[ ]

is onto.

Proof. Z satisfies:

∀x,y, z, (xA+yA+ zA = A
→ ∃y ′ ≡ y (mod z), (xA+y ′A = A)).∗ ∗ ∗

∗ ∗ ∗
x y z

�
∗ ∗ ∗
∗ ∗ ∗
x y ′ z


�

∗ ∗ ∗
∗ ∗ ∗
x y ′ 1

�
∗ ∗ 0
∗ ∗ 0
0 0 1

 = [∗∗
]

.

Lem (MS2a).
[
b
a

] [
b′

a

]
=
[
bb′

a

]
.

Proof. Since

 0 0 1
−1 0 0
0 −1 0


±1

∈ E(3, A) (verify!!),
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[
b′

a

]
=
 a b′ 0
c′ d′ 0
0 0 1


≡
[

0 −1 0
0 0 −1
1 0 0

][
a b′ 0
c′ d′ 0
0 0 1

][
0 0 1
−1 0 0
0 −1 0

]

=
 d′ 0 −c′

0 1 0
−b′ 0 a

.

[
b
a

] [
b′

a

]
≡
a b 0
∗ ∗ 0
0 0 1


 d′ 0 −c′

0 1 0
−b′ 0 a


=
ad′ b −ac′
∗ ∗ ∗
−b′ 0 a

�
 1 b 0
∗ ∗ ∗
−b′ 0 a


�

1 b 0
0 ∗ ∗
0 bb′ a

�
1 0 0

0 ∗ ∗
0 bb′ a


�

a bb′ 0
∗ ∗ 0
0 0 1

 = [bb′
a

]
.

Step 1. C has exponent dividing 12 (i.e. x12 = e).

Lem.

[
a b
c d

]
∈ SL(2, A) ⇒

[
b
a

]−1

=
[
c
a

]
.

Given a,b, we choose fi, gi, bi ∈ Z
to make following calculation valid:[
b
a

]−12

=
[
c
a

]12

=
2∏
i=1

[
c

fi + gia

]2

=
2∏
i=1

[
cgi

fi + gia

]2

=
2∏
i=1

[
bigi

fi + gia

]−2

=
2∏
i=1

[
bi

fi + gia

]−2

=
2∏
i=1

[
bi
1

]−2

= 1.

It suffices to know that:

• (f1 + g1a)(f2 + g2a) ≡ a6 (mod c).
• f 2

i ≡ 1 (mod gi).

• fiId+ gi
[
a bi
c ∗

]
∈ SL(2,Z).

• fi + gia ≡ 1 (mod bi).

To obtain these properties, let

• b1 = b.

• b2 ≡ b (mod a), gcd
(
φ(b1),φ(b2)

) ≤ 6.*

• αi = exponent of a modulo bi
(so gcd(α1, α2) ≤ 6).

• t1, t2 ∈ Z with α1t1 +α2t2 = 6.

• fi, gi ∈ Z with Tαitii = fiId+ giTi,
where Ti =

[
a bi
c di

]
∈ SL(2,Z).

Then:

• a6 = aα1t1aα2t2

≡ (f1 + g1a)(f2 + g2a) (mod c).
• 1 = det(Tαitii ) ≡ det(fiId) = f 2

i (mod gi).

• fiId+ gi
[
a bi
c ∗

]
= Tαitii ∈ SL(2,Z).

• fi + gia ≡ aαiti ≡ 1ti ≡ 1 (mod bi).
*∀ prime p > 3, write b ≡ xpyp (mod p), where xp,yp �≡
1 (mod p). Let b2 = xy , where x,y prime and x ≡
xp (mod p) for prime divisors p of φ(b).
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1. Some arithmetic groups that

cannot act on the circle

2. Bounded generation of SL(n,Z)

3. Bounded generation and actions on the circle

* Will be sloppy about passing to finite-index subgrps.

3. Bounded generation and actions on the circle

Abstract. Joint work with Lucy Lifschitz pro-

vides many new examples of arithmetic groups

that have no interesting actions on the cir-

cle. This includes all finite-index subgroups of

SL
(
2,Z[

√
r]
)

or SL
(
2,Z[1/r]

)
, where r > 1 is

square free. The proofs are based on the fact,

proved by D. Carter, G. Keller, and E. Paige, that

every element of these groups is a product of a

bounded number of elementary matrices.

Γ = SL(3,Z) or SL
(
2,Z[

√
5]
)

or SL
(
2,Z[1/5]

)
Thm (Witte, Lifschitz-Morris). No actions on S1.

φ: Γ → Homeo(S1), not ≈ lin-frac*⇒ Γφ is finite.

(and other applications of bounded generation)

Thm (Ghys). φ: Γ → Homeo(S1), not ≈ lin-frac*

⇒ Γφ has a fixed point (or finite orbit ).

Cor. � action on R ⇒ � action on S1 (*).

Proof. Suppose Γ acts on S1 (not ≈ lin-frac).

Ghys: Γ has a fixed point.

So Γ acts on S1 � {x} ≈ R.

Thm (Witte, Lifschitz-Morris). No actions on R.

φ: Γ → Homeo+(R) ⇒ Γφ is trivial.

Thm (Lifschitz-Morris). Γ = SL
(
2,Z[1/5]

)
,

φ: Γ → Homeo+(R) ⇒ Γφ is trivial.

Proof: Combine bdd generation and bdd orbits.

U =
[

1 ∗
0 1

]
, V =

[
1 0
∗ 1

]
.

Thm (Liehl, Carter-Keller-Paige). Γ ≈ SL(2,O),
⇒ (≈) Γ has bdd generation by U and V .

I.e., Γ ≈ UVUV · · ·UV .

Thm (Lifschitz-Morris). Γ ≈ SL(2,O) acts on R
⇒ everyU -orbit is bdd (and every V -orbit is bdd).

Cor. Every Γ -orbit is bdd, so Γ has a fixed pt.

Cor [L-M]. � nontrivial (or-pres) action of Γ on R.

Proof. Let F = {fixed points} (closed).

I = component of R � F (Γ -invariant).Γ acts on I = open interval ≈ R.Γ has no fixed points in I. →←

April 27, 2005
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Orbits of unipotent subgroups are bounded.

Thm. SL
(
2,Z[1/p]

)
acts on R ⇒ U -orbits bdd.

u =
[

1 u
0 1

]
, v =

[
1 0
v 1

]
, p =

[
p 0
0 1/p

]
Commutation relations.

• p−n1pn → 0,

• p−n1pn →∞.

Spse U -orbit and V -orbit of x not bdd above.

Assume p fixes x. (p does have fixed pts, so ok.)

Wolog x 1 > x 1. So (x 1)pn > (x 1)pn.

LHS = (x 1)pn = x(p−n 1pn)→ x (0) = x <∞.

RHS = (x 1)pn = x (p−n1pn) → x (∞) → ∞.

→←
Similar for SL

(
2,Z[α]

)
.

p � ω , ω = unit of infinite order.

Other applications of bounded generation.

• Γ is superrigid (<∞ irred reps of each dim)

• Γ has the Congruence Subgroup Property

• SL(3,Z) has property T (with explicit ε)
• (Ghys’ Thm) action of Γ on S1 has fixed pt

(or finite orbit) if H2(Γ ; R) = 0

Thm (Ghys). Action of Γ on S1 has fixed pt (≈)
if H1(Γ ; R) = 0.

Proof. Univ cover S̃1 = R has action of Γ̃ .
π1(S1) = Z ⇒ e → Z→ Γ̃ → Γ → e.

Extension defined by ω ∈ H2(Γ ; Z).
H1(Γ ; R/Z) δ→ H2(Γ ; Z)→ H2(Γ ; R) = 0

ω = δ(α) for some homo α: Γ → R/Z
R/Z abel ⇒ α trivial on Γ ′

⇒ ω trivial on Γ ′ (finite index)

So Γ̃ 
 Γ × Z.

Action of Γ on S1 lifts to action of Γ on R.

Has fixed point [Lifschitz-Morris].

Thm. Γ = SL(3,Z) has Kazhdan’s property T .

Idea of proof. Wish to show H1(Γ ;H ) = 0.

Equivalent: Γ acts on H by affine isometries

(γ(v) = Tv +w, T linear, w ∈H )

⇒ Γ has a fixed point.

Enough to show Γ has a bounded orbit

(then centroid of convex hull is fixed).

By bounded generation, enough to show1 0 0
0 1 ∗
0 0 1

 has bounded orbit.

Use

∗ ∗ ∗
∗ ∗ ∗
0 0 1

 � SL(2,Z)� Z2,

show Z2 has bounded orbit.
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Thm. SL
(
2,Z[

√
5]
)

is superrigid.

I.e., <∞ irreducible reps of each dimension.

Idea of proof. Suppose α: Γ → GL(d,C).

Show eigenvals of α(g) are alg’ic. (ctbly many)

∴ trace
(
α(g)

)
cannot deform continuously.

∴ α cannot deform continuously.

So <∞ possibilities for α.

Note. Eigenvaluess of α(g) are algebraic

⇔ α(g) satisfies a poly with Q-coeffs

⇔ Q-span of 〈α(g)〉 is finite dim’l.

Key. Eigenvalues of α(u) are algebraic.

Therefore Q-span of α(U) is finite dim’l.

Since Γ = UVUV · · ·UV ,

then Q-span of α(Γ) is finite dim’l.

So Q-span of 〈α(g)〉 is finite dim’l.

Key. Eigenvalues of α(u) are algebraic.

Consider SL
(
2,Z[1/p]

)
.

u =
[

1 u
0 1

]
, v =

[
1 0
v 1

]
, p =

[
p 0
0 1/p

]

p−1up = u/p2

⇒ (p−1up)p
2 = u

⇒ eigenval of u sats λp
2 = λ

Apply α to calculation:

eigenval of α(u) sats λp
2 = λ

So λ is algebraic.

Recall. Γ ⊃ SL(3,Z) or Sp(4,Z) ⇔ Q-rank Γ ≥ 2

⇒ Γ does not act on S1 (or R).

Work in progress.

• In { Γ | Q-rank Γ = 1 (& R-rankG ≥ 2) },
find shortest possible list of grps Γ1, Γ2, . . .

s.t. ∀Γ , ∃ Γi ⊆ Γ (≈).

Almost finished (is 2E6 on the list?)

(with V. Chernousov and L. Lifschitz)

SL(2,O), SU
(|x|2 − |y|2 +a|z|2)O, 3,6D4, 2E6???

• Prove unip subgrps of Γi have bdd orbits.

Finished (with L. Lifschitz).

• Prove unip subgrps bddly gen Γi.
Not done.

Conclusion: Conjecture true when Q-rank Γ ≥ 1.

After that: Case where Q-rank Γ = 0. (cocpct)

Need new methods! (no unip elements in Γ )
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