Dave Witte Morris	cannot act on the circle
Dept of Math and Comp Sci University of Lethbridge Lethbridge, AB, T1K 3M4 Dave.Morris@uleth.ca http://people.uleth.ca/~dave.morris/ 1. Some arithmetic groups that cannot act on the circle 2. Bounded generation of SL(n, Z) 3. Bounded generation and actions on the circle * Will be sloppy about passing to finite-index subgrps.	Abstract. It is known that finite-index sub- groups of the arithmetic group $SL(3, \mathbb{Z})$ have no interesting actions on the circle. This naturally led to the conjecture that most other arithmetic groups (of higher real rank) also cannot act on the circle (except by linear-fractional transfor- mations). Theorems of É. Ghys and A. Navas es- tablish that the conjecture is true if we assume that the maps involved are differentiable. (We would prefer to assume only that they are con- tinuous.) Both of these proofs are elegant, and they each illustrate a fundamental technique in the theory of lattice subgroups: Ghys uses the Furstenberg boundary, and Navas relies on Kazhdan's property <i>T</i> .
Transformation grps. Given grp Γ, cpct mfld M. What are the actions of Γ on M? I.e., what are homos ϕ : Γ → Homeo ₊ (M)? Simplest case: Assume dim $M = 1$. So $M = S^1$. In my work, Γ is an arithmetic group: $\Gamma = SL(3, \mathbb{Z}) = \{3 \times 3 \text{ integer matrices of det } 1\}$ (or subgroup of finite index)	$\Gamma = SL(3,\mathbb{Z}) \text{ or } SL(2,\mathbb{Z}[\sqrt{2}]) \text{ or } SL(2,\mathbb{Z}[1/2]).$ <i>Eg.</i> linear-fractional transformations $\frac{ax+b}{cx+d}$ provide action of $SL(2,\mathbb{R})$ on $\mathbb{R} \cup \{\infty\} \sim S^1$. So $SL(2,\mathbb{Z}[\sqrt{2}])$ acts by linear-fractionals. Conj. $\phi:\Gamma \to \text{Homeo}(S^1)$, <i>not</i> $\approx \text{lin-frac}$ $\Rightarrow \Gamma^{\phi}$ is finite.

Or $\Gamma = SL(2, \mathbb{Z}[\sqrt{2}])$ Or $\Gamma = SL(2, \mathbb{Z}[\alpha])$ $\alpha = real, irrational algebraic integer.$

Actions of arithmetic groups on the circle

 $\operatorname{Or} \Gamma = \operatorname{SL}(2, \mathbb{Z}[1/2]) \qquad \operatorname{Or} 1/2 \mapsto 1/r, \quad r > 1.$

But $\Gamma \neq SL(2,\mathbb{Z})$, some other "small" grps. (Assume Γ is irred latt in G, \mathbb{R} -rank $G \ge 2$.) (Our *theorems* assume Γ *not* cocompact)

Eg. SL(2, \mathbb{Z}) (\approx free grp) has *many* actions on S^1 .

Rem. Let $\Gamma = \pi_1$ (hyper) (and go to fin-ind subgrp). Thurston conjecture: $\exists \sigma: \Gamma \to \mathbb{Z}$. Since $\mathbb{Z} \hookrightarrow \text{Homeo}(S^1)$, then Γ acts on S^1 .

1. Some arithmetic groups that

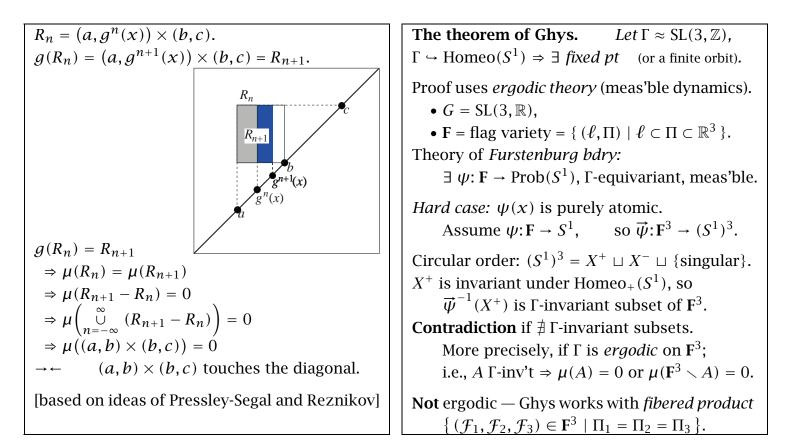
Rem (Margulis Normal Subgrp Thm). Γ^{ϕ} infinite $\Rightarrow \ker(\phi)$ finite. Hence, we assume $\phi: \Gamma \hookrightarrow \operatorname{Homeo}(S^1)$.

2

Evidence for the conjecture. $\phi: \Gamma \to \operatorname{Homeo}(S^1) (\operatorname{not} \approx \operatorname{lin-frac}) \Rightarrow \Gamma^{\phi} \text{ is finite.}$ **Thm** (Witte). Γ^{ϕ} *finite* if $\Gamma = SL(3, \mathbb{Z})$ or $\Gamma = \text{Sp}(4, \mathbb{Z})$ or contains either. *I.e.*, \mathbb{Q} -rank(Γ) ≥ 2 . **Thm** (Ghys). Γ^{ϕ} has a fixed point (or a finite orbit). (Proof uses *ergodic theory* and *amenability* — or the *Furstenberg boundary*.) Combine with Reeb-Thurston Stability Thm: **Cor** (Ghys). Γ^{ϕ} finite if $\phi: \Gamma \to \text{Diff}^{1}(S^{1})$. **Thm** (Navas). Γ^{ϕ} *finite if* $\phi: \Gamma \to \text{Diff}^2(S^1)$. (Only requires that Γ has *Kazhdan's property T*, not that Γ is arithmetic — or linear.) **Thm** (Lifschitz-Morris). Γ^{ϕ} *finite* if $\Gamma = SL(2, \mathbb{Z}[\sqrt{2}])$ or $SL(2, \mathbb{Z}[1/2])$. (Proof uses bounded generation.)

The theorem of Navas. $\Gamma \subset \text{Diff}^2(S^1)$, Kazhdan's property $T \Rightarrow \Gamma$ finite. Defn. Γ has Kazhdan's property T: $H^1(\Gamma, \mathcal{H}) = 0$, \forall unitary Γ -module \mathcal{H} . I.e.: $\mathcal{H} = L^2(S^1 \times S^1)$ (square-integrable funcs). \mathcal{H} is Hilbert space (normed ∞ -dim'l vec space) $\|F\|^2 = \left| \int_{S^1 \times S^1} F(s, t)^2 \, ds \, dt \right|$ Spse Γ acts on \mathcal{H} by unitaries $(\|F^g\| = \|F\|)$. $\alpha: \Gamma \to \mathcal{H}$ is a 1-cocycle $(\alpha(gh) = \alpha(g)^h + \alpha(h))$ $\Rightarrow \alpha$ is a coboundary $(\exists v \in \mathcal{H}, \alpha(g) = v^g - v)$.

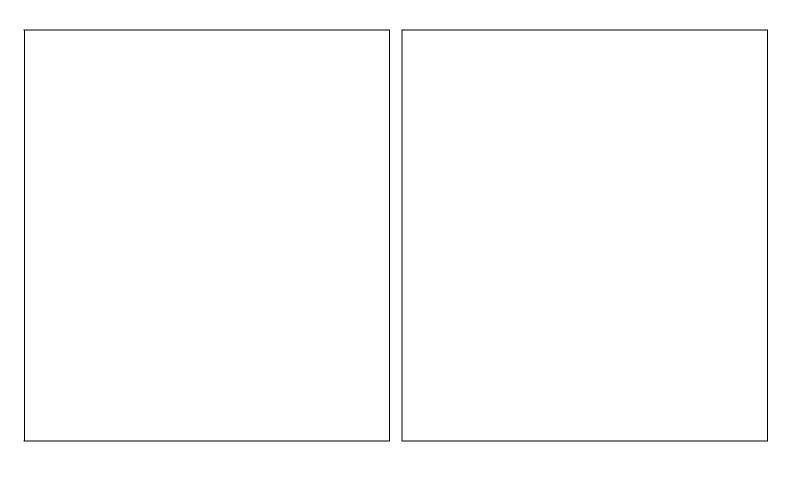
Thm (Navas). $\Gamma \subset \text{Diff}^2(S^1)$, property T R_n $\Rightarrow \Gamma$ finite. *Proof.* For $F \in L^2(S^1 \times S^1)$ and $g \in \Gamma$, $F^{g}(r,s) = F(g(r),g(s)) |g'(r)|^{1/2} |g'(s)|^{1/2}.$ This is unitary rep'n of Γ on $L^2(S^1 \times S^1)$. Let F(r,s) = f(r-s) on $S^1 \times S^1$, where $f(x) = \frac{1}{x} + C^{\infty}$. • $F \notin L^2(S^1 \times S^1)$ (bcs 1/x singularity) Let $\mu = (F - v)^2 dr ds$, so • $\forall g \in \text{Diff}^2(S^1), F^g - F$ is bounded. • μ is Γ -invariant measure on $S^1 \times S^1$; • $\mu(\text{rect}) = \begin{cases} \infty & \text{if touches diagonal} \\ \text{finite} & \text{if away from diagonal} \end{cases}$ Define $\alpha(a) = F^g - F \in L^2(S^1 \times S^1)).$ α is a cocycle, so, by Kazhdan's Property T, Choose $g \in \Gamma$, has a fixed pt. $\exists v \in L^2(S^1 \times S^1), F^g - F = v^g - v.$ Pass to triple cover, so *q* has \geq 3 fixed points: g(a) = a, g(b) = b, g(c) = c.Then • F - v is Γ -invariant; For $x \in (a, b)$, $\lim g^n(x) = \begin{cases} b & \text{as } n \to \infty \\ a & \text{as } n \to -\infty \end{cases}$ • $F - v \notin L^2(S^1 \times S^1)$. (1/x singular on diag) $R_n = (a, g^n(x)) \times (b, c)$



 $G = \operatorname{SL}(3, \mathbb{R}), \quad \mathbf{F} = \{ (\ell, \Pi) \mid \ell \subset \Pi \subset \mathbb{R}^2 \}.$ *G* is transitive on **F**. So $\mathbf{F} \cong G/P$, where $P = \operatorname{Stab}_G(\operatorname{flag}) = \begin{bmatrix} * & * & * \\ & * & * \\ & & * \end{bmatrix}.$ **Moore Ergodicity Thm.** Γ *is ergodic on* G/H \Leftrightarrow *H is not compact.* So Γ is ergodic on **F**. (a.e. Γ -orbit is dense.) **Cor.** Γ *is ergodic on* $\mathbf{F}^2 = \mathbf{F} \times \mathbf{F}.$ *Proof.* $\operatorname{Stab}(\mathcal{F}_1, \mathcal{F}_2) = \begin{bmatrix} * & * \\ & * \end{bmatrix}.$ Not cpct. **Cor.** Γ *is* **not** *ergodic on* $\mathbf{F}^3.$ *Proof.* $\operatorname{Stab}(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3) = \{\pm \operatorname{Id}\}$ finite. **Cor.** *Erg on* $\{(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3) \in \mathbf{F}^3 \mid \Pi_1 = \Pi_2 = \Pi_3\}.$ *Proof. G* is transitive on {nonsingular}, $\operatorname{Stab}_G(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3) = \begin{bmatrix} \lambda & 0 & * \\ 0 & \lambda & * \\ 0 & 0 & 1/\lambda^2 \end{bmatrix}$ not cpct.

Furstenberg boundary theory. (amenability) $\exists \psi: \mathbf{F} \rightarrow \operatorname{Prob}(S^1) \Gamma$ -*equivariant* (and meas'ble). Becausee $\mathbf{F} = G/P$, we want $\Psi: G \to \operatorname{Prob}(S^1)$, Γ -equivariant, s.t. $\Psi(gp) = \Psi(g)$, (meas'ble). Let $\mathcal{E} = \{ \Gamma \text{-equi } \Psi : G \to \operatorname{Prob}(S^1) \}.$ • Prob(*S*¹) is a compact, convex set (weak^{*}) $\Rightarrow \mathcal{E}$ is a compact, convex set. • *G* acts on *E* by translation. We want *P* to have a fixed point in \mathcal{E} . *Defn.* group *H* is *amenable*: • *H* acts continuously on cpct metric space *X* $\Rightarrow \exists$ *H*-invariant prob meas on *X*. • *H* acts linearly on cpct convex set *X* \Rightarrow \exists fixed point in *X*. **Prop.** Every abelian group is amenable. **Cor.** Every solvable group is amenable. In particular, *P* is am<u>enable</u>.

X = compact convex subset of Banach space V .	References				
Lem. $T: V \rightarrow V$ linear (bdd), X T-invariant	É. Ghys: Actions de réseaux sur le cercle. <i>Invent. Math.</i> 137 (1999) 199–231.				
$\Rightarrow T \text{ has a fixed point in } X.$ Proof. $(Tv + T^2v + \dots + T^nv)/n$	É. Ghys: Groups acting on the circle. <i>L'Enseignement Mathématique</i> 47 (2001) 1-79.				
has a convergent subseq. Limit is fixed point.	L. Lifschitz and D. Morris:				
Cor. Abelian groups are amenable.	Isotropic nonarchimedean <i>S</i> -arithmetic groups are not left orderable,				
<i>Proof.</i> Spse T_1 and T_2 commute, $F_i = \{$ fixed pts $\}$.	<i>Comptes Rendus Acad Sci. Paris, Ser. I</i> 339 (2004), no. 6, 417-420.				
F_1 cpct, convex, T_2 -inv't \Rightarrow T_2 has fixed pt in F_1 . Therefore T_1 and T_2 have a common fixed point.	 A. Navas: Actions de groupes de Kazhdan sur le cercle, <i>Ann. Sci. École Norm. Sup.</i> (4) 35 (2002), no. 5, 749–758. D. Witte: Arithmetic groups of higher Q-rank cannot act on 1- 				
Cor. <i>P</i> is amenable.					
	manifolds, <i>Proc. Amer. Math. Soc.</i> 122 (1994) 333–340.				
<i>Proof.</i> Let $P_2 = \begin{bmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix}$, $P_3 = \begin{bmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.	D.W.Morris: <i>Introduction to Arithmetic Groups</i> (preprint). http://people.uleth.ca/~dave.morris/				
$P_3 \triangleleft P_2 \Rightarrow F_3 \text{ is } P_2 \text{-invariant. } (P_3 \text{ abel } \Rightarrow F_3 \neq \emptyset.)$	LectureNotes.shtml				
P_2/P_3 abelian \Rightarrow P_2 has fixed point in F_3 .	D. Witte and R. J. Zimmer:				
$F_2 \neq \emptyset \& P_2 \lhd P \& P/P_2$ abelian	Actions of semisimple Lie groups on circle bundles, <i>Geometriae Dedicata</i> 87 (2001) 91–121.				
\Rightarrow P_1 has a fixed point in F_2 .					



Actions of arithmetic groups on the circle	2. Bounded generation of $SL(n, \mathbb{Z})$
Dave Witte Morris	Abstract. If <i>T</i> is an invertible $n \times n$ matrix, then a fundamental theorem of undergraduate linear
Dept of Math and Comp Sci	algebra states that <i>T</i> is a product of elementary
University of Lethbridge	matrices. More precisely, it is not difficult to see
Lethbridge, AB, T1K 3M4	that <i>T</i> is a product of n^2 (or less) elementary
Dave.Morris@uleth.ca	matrices. However, these results assume that the matrix entries belong to a field (such as \mathbb{C}
http://people.uleth.ca/~dave.morris/	or \mathbb{R}). The situation is more interesting if we require the entries of all of our matrices to be integers, because this makes it much more difficult
1. Some arithmetic groups that	to show that there is a number N (analogous
cannot act on the circle	to n^2), such that every invertible $n \times n$ matrix is a product of N (or less) elementary matrices.
2. Bounded generation of $SL(n, \mathbb{Z})$	For $n \ge 3$, a proof can be given that uses al- gebraic methods from the proof of the Congru-
3. Bounded generation and actions on the circle	ence Subgroup Property, and then applies the Compactness Theorem of First-Order Logic. On
	the other hand, no such <i>N</i> exists for the 2×2 matrices.

Thm (Carter-Keller, Liehl, Carter-Keller-Paige).					
$\Gamma = \mathrm{SL}(3,\mathbb{Z}), \ \mathrm{SL}(2,\mathbb{Z}[\sqrt{2}]), \ \mathrm{SL}(2,\mathbb{Z}[1/2]),$					
$\Rightarrow \Gamma$ is bddly generated by elem matrices.					
Pam Also true for					

Rem. Also true for

- $SL(n, \mathcal{O})$ with $n \ge 3$ [C-K],
- SL(2, \mathcal{O}) if \mathcal{O} has ∞ units [C-K-P],
- $\mathbb{G}(\mathbb{Z})$ if \mathbb{G} is \mathbb{Q} -split, \mathbb{Q} -rank $\mathbb{G} \ge 2$ [Tavgen],
- some orthog grps [Erovenko-Rapinchuk].

Consequences (next lecture).

- Γ is *superrigid* (< ∞ irred reps of each dim)
- Γ has the *Congruence Subgroup Property*
- SL(3, \mathbb{Z}) has *property T* (with explicit ϵ)
- (Ghys' Thm) action of Γ on S^1 has fixed pt (or finite orbit) if $H^2(\Gamma; \mathbb{R}) = 0$
- [Lifschitz-Morris] Γ cannot act on S^1 (except \approx lin-frac)

Thm (Carter-Keller). $\Gamma = SL(3, \mathbb{Z})$ *is boundedly generated by elementary matrices.*

Eg. Elementary matrices:

1	25	0		$\begin{bmatrix} 1\\ 0\\ -8 \end{bmatrix}$	0	0		1	0	0]
0	1	0	,	0	1	0	,	0	1	16	.
0	0	1_		8	0	1		0	0	1	

Recall. Every invertible matrix can be reduced to Id by elementary column operations.

Prop). <i>T</i> €	≡ SL(3,ℤ)	⇒ 7	¯ ~~]	ld by	Z	colu	mn o	ps.
Eg.		$\begin{bmatrix} 5\\12 \end{bmatrix}$			_					
		Ľ		J	LZ	ŢŢ		Γu	ŢŢ	

Cor. $T \in SL(3, \mathbb{Z}) \Rightarrow T = product of elem mats.$

Thm (Carter-Keller). T = prod of 48 elem mats.

Remark. No such bound exists for $SL(2, \mathbb{Z})$: $SL(2, \mathbb{Z})$ **not** bdd gen by elem mats. 1

Thm (Liehl). SL(2, $\mathbb{Z}[1/2]$) <i>bdd gen by elems.</i> I.e., <i>T</i> \rightsquigarrow Id by $\mathbb{Z}[1/2]$ col ops, <i>#</i> steps is bdd. <i>Easy proof.</i> Assume Artin's Conjecture .	 <i>How to prove bounded generation</i> [C-K-P]. Compactness Theorem of 1st-order logic Mennicke symbols (Algebraic <i>K</i>-Theory) 				
<i>Eg.</i> 2 is a <i>primitive root</i> modulo 13: $\{2^k\} = \{1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7\}.$ Complete set of residues.	<i>Eg. F</i> field \Rightarrow <i>T</i> \in SL(<i>n</i> , <i>F</i>) is prod of elem mats. I.e., \forall field <i>F</i> , \forall <i>T</i> \in SL(<i>n</i> , <i>F</i>), \exists <i>r</i> \in \mathbb{N} , <i>T</i> is a product of <i>r</i> elementary matrices.				
Conj (Artin). $\forall r \neq \pm 1$, perfect square, $\exists \propto primes q, s.t. r is prim root modulo q.$ Assume $\exists q$ in every arith progression $\{a + nb\}$.	Cor (by applying the Compactness Theorem). $\exists r \in \mathbb{N}, \forall field F, \forall T \in SL(n, F),$ <i>T is a product of</i> $\leq r$ <i>elementary matrices.</i>				
$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad q = b + ka \text{ prime, } 2 \text{ is prim root}$	I.e., SL(<i>n</i> , <i>F</i>) has bdd gen by elem mats. (& uniform for all fields—deps only on <i>n</i> .)				
$\begin{bmatrix} a & q \\ * & * \end{bmatrix} \qquad 2^{\ell} \equiv a \pmod{q}; \ 2^{\ell} = a + k'q$ $\begin{bmatrix} 2^{\ell} & q \\ * & * \end{bmatrix} \qquad 2^{k} \text{ unit } \Rightarrow \text{ can add } anything \text{ to } q$	<i>Key.</i> Fields are defined by 1st-order statements. • multiplication is commutative: $\forall x, \forall y, (xy = yx)$				
$\begin{bmatrix} 2^{\ell} & 1 \\ * & * \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 \\ * & * \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$	 every nonzero element is a unit ∀x, (x ≠ 0 → ∃y, (xy = 1)) the ring axioms (comm, assoc, distrib,) 				
<i>Recall.</i> 1st-order statements (in ring theory)	Gödel Completeness Thm. Suppose				
only use \forall , \exists , and, or, \rightarrow , \neg , +, -, 0, 1	• $\varphi_1, \varphi_2, \dots$ 1st-order, and				
(and add'l consts c_1, c_2, \ldots , relns R_i)	• \nexists ring satisfying every φ_i .				
• e.g., every 2-generated ideal is principal	Then one can prove a contradiction $(0 \neq 0)$ from				
$\forall x_1, \forall x_2, \exists y, (x_1A + x_2A = yA)$	axioms $\varphi_1, \varphi_2, \ldots$, together with ring axioms.				
• e.g., every finitely generated ideal is princ (use a list of axioms, not a single one)	Proof (finite length) refers to finitely many φ_i :				
• not : every ideal is principal	Compactness Thm. Suppose				
• $(x_{i,j})$ is an elementary matrix	• $\varphi_1, \varphi_2, \dots$ 1st-order, and				
• $(x_{i,j})$ is a product of ≤ 2 elementary mats	• \nexists ring satisfying every φ_i .				
\exists elem mats $(y_{i,j}), (z_{i,j}),$	Then $\exists r \in \mathbb{N}, \nexists$ ring satisfying $\varphi_1, \ldots, \varphi_r$.				
$x_{i,j} = y_{i,1}z_{1,j} + \cdots + y_{i,n}z_{n,j}$	Cor. $\exists r, \forall field F, \forall T \in SL(n, A),$				
• every $T \in SL(n, A)$ is prod of $\leq r$ elem mats	T is prod of $\leq r$ elem mats.				
• not : $SL(n, A)$ gen'd by elem mats	<i>Proof.</i> φ_0 : field axioms.				
(or boundedly generated by elem mats)	φ_i : $(c_{k,\ell}) \in SL(n,F)$, not prod $\leq i$ elem mats.				
• $(c_{i,j})$ is a product of $\leq r$ elem mats	φ_i . $(\phi_{k,\ell}) \subset OL(0,1/2)$, not prod $\subseteq \ell$ creat mats.				

 \nexists ring sat every φ_i . So $\exists r$, no field sats φ_r .

- $(c_{i,j})$ is *not* a product of $\leq r$ elem mats
- $(c_{i,j})$ is *not* a product of elem mats

Compactness Thm.

[‡] ring satisfying $\varphi_1, \varphi_2, ...$ (1st order). ⇒ $\exists r \in \mathbb{N}, \ddagger$ ring satisfying $\varphi_1, ..., \varphi_r$. Defn. $E(n, A) = \langle \text{elem mats in SL}(n, A) \rangle$. **Cor.** Spse Φ is a set of 1st-order ring axioms, s.t. $\forall A \text{ sat } \Phi, E(n, A) = SL(n, A)$. Then $\forall A \text{ sat } \Phi, SL(n, A)$ bdd gen by elems. Proof. φ_i : $(c_{k,\ell}) \in SL(n, A)$, not prod $\leq i$ elems. Not bdd gen $\Rightarrow \Phi \cup \{\varphi_1, ..., \varphi_r\}$ consistent $\Rightarrow \Phi \cup \{\varphi_1, \varphi_2, ...\}$ consistent $\rightarrow \leftarrow$ **Cor.** Spse Φ is a set of 1-st order ring axioms, s.t. $\forall A \text{ sat } \Phi, E(n, A) \approx SL(n, A)$. (finite ind) Then $\forall A \text{ sat } \Phi, SL(n, A)$ bdd gen by elems (\approx). **Thm** (Carter-Keller). SL(3, \mathbb{Z}) bdd gen by elems. Method of proof. $\langle \text{elem mats} \rangle$ fin ind in SL(3, \mathbb{Z}). Only use 1st-order properties of \mathbb{Z} in the proof.

Step 2. *C* is cyclic. Given $\begin{bmatrix} b_1 \\ a_1 \end{bmatrix}$, $\begin{bmatrix} b_2 \\ a_2 \end{bmatrix}$ (nontrivial). Dirichlet: \exists large prime $p \equiv b_1 \pmod{a_1}$. $\begin{bmatrix} b_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} p \\ a_1 \end{bmatrix}$; wma $b_1 = p$ prime. In fact, wma all a_i, b_i are large primes $(b_1 \neq b_2)$. CRT: $\exists q, \text{ s.t. } q \equiv a_i \pmod{b_i}$; wma $a_1 = q = a_2$. $(\mathbb{Z}/q\mathbb{Z})^{\times}$ cyclic $\Rightarrow \exists b, e_i, \text{ s.t. } b_i \equiv b^{e_i} \pmod{q}$. $\begin{bmatrix} b_i \\ a_i \end{bmatrix} = \begin{bmatrix} b_i \\ q \end{bmatrix} = \begin{bmatrix} b^{e_i} \\ q \end{bmatrix} = \begin{bmatrix} b \\ q \end{bmatrix}^{e_i} \in \left\langle \begin{bmatrix} b \\ q \end{bmatrix} \right\rangle$. Any two elts of *C* are in same cyclic subgrp. So *C* is cyclic. \Box Note: Since $C^{12} = e$, only need $(\mathbb{Z}/q\mathbb{Z})^{\times}$ cyclic modulo 12th powers. This is a 1st-order statement: $\exists x, \forall \gamma, \exists z, (\gamma = z^4 \text{ or } xz^4 \text{ or } \cdots \text{ or } x^{11}z^4)$.

Lem. [] is onto.
Proof. \mathbb{Z} satisfies: $\forall x, y, z, (xA + yA + zA = A)$ $\rightarrow \exists y' \equiv y \pmod{z}, (xA + y'A = A)).$
$\begin{bmatrix} * & * & * \\ * & * & * \\ x & y & z \end{bmatrix} \rightsquigarrow \begin{bmatrix} * & * & * \\ * & * & * \\ x & y' & z \end{bmatrix}$ $\rightsquigarrow \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \\ x & y' & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} * \\ * \end{bmatrix}.$
Lem (MS2a). $\begin{bmatrix} b \\ a \end{bmatrix} \begin{bmatrix} b' \\ a \end{bmatrix} = \begin{bmatrix} bb' \\ a \end{bmatrix}$. Proof. Since $\begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}^{\pm 1} \in E(3, A)$ (verify!!),

$$\begin{bmatrix} b'\\ a \end{bmatrix} = \begin{bmatrix} a' b' & 0\\ c' & d' & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b' & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b' & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1\\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b' & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a' & 0 & -c'\\ 0 & 1 & 0\\ -b' & 0 & a \end{bmatrix}$$

$$= \begin{bmatrix} a' & b & 0\\ a' & b & -ac'\\ -b' & 0 & a \end{bmatrix} \begin{bmatrix} d' & 0 & -c'\\ 0 & 1 & 0\\ -b' & 0 & a \end{bmatrix}$$

$$= \begin{bmatrix} ad' & b & -ac'\\ a' & * & * \\ -b' & 0 & a \end{bmatrix} \begin{bmatrix} 1 & b & 0\\ -b' & 0 & a \end{bmatrix}$$

$$= \begin{bmatrix} ad' & b & -ac'\\ -b' & 0 & a \end{bmatrix} \begin{bmatrix} 1 & b & 0\\ -b' & 0 & a \end{bmatrix}$$

$$= \begin{bmatrix} ad' & b & -ac'\\ -b' & 0 & a \end{bmatrix} \begin{bmatrix} 1 & b & 0\\ -b' & 0 & a \end{bmatrix}$$

$$= \begin{bmatrix} ad' & b & -ac'\\ -b' & 0 & a \end{bmatrix} = \begin{bmatrix} bb'\\ -b' & 0 & a \end{bmatrix}$$

$$= \begin{bmatrix} ab & b & 0\\ 0 & bb' & a \\ 0 & bb' & a \end{bmatrix}$$

$$= \begin{bmatrix} bb'\\ 1 & -b' & 0 & a \\ 0 & bb' & a \\ 0 & bb' & a \end{bmatrix}$$

$$= \begin{bmatrix} bb'\\ 1 & -b' & 0 & a \\ 0 & bb' & a \\ 0 & bb' & a \end{bmatrix}$$

$$= \begin{bmatrix} bb'\\ 1 & -b' & 0 & a \\ 0 & bb' & a \\ 0 & bb' & a \end{bmatrix}$$

$$= \begin{bmatrix} bb'\\ 2 & -b' \\ -b' & 0 & a \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} bb'\\ a \end{bmatrix}$$
To obtain these properties, let

$$b_1 = b.$$

$$b_2 = b (mod a), gcd(\phi(b_1), \phi(b_2)) \le 6.^{+} \\ 0 & b_1 = b.$$

$$b_2 = b (mod a), gcd(\phi(b_1), \phi(b_2)) \le 6.^{+} \\ 0 & f_1 + g_1 a = 1 (mod b_1). \end{bmatrix}$$
H. Bass, *Algebraic K-theory*, Benjamin, New York, 1968.
H. Bass, *J. Minor, and J.-P. Serre, Solution of the Congruence Subgroup Problem for St. n(n > 3) and Spc_n(n > 3) and Spc_*

1

Actions of arithmetic groups on the circle	3. Bounded generation and actions on the circle
Dave Witte Morris Dept of Math and Comp Sci University of Lethbridge Lethbridge, AB, T1K 3M4 Dave.Morris@uleth.ca http://people.uleth.ca/~dave.morris/ 1. Some arithmetic groups that cannot act on the circle 2. Bounded generation of SL(n, Z) 3. Bounded generation and actions on the circle * Will be sloppy about passing to finite-index subgrps.	Abstract. Joint work with Lucy Lifschitz provides many new examples of arithmetic groups that have no interesting actions on the circle. This includes all finite-index subgroups of SL(2, $Z[\sqrt{r}]$) or SL(2, $Z[1/r]$), where $r > 1$ is square free. The proofs are based on the fact, proved by D. Carter, G. Keller, and E. Paige, that every element of these groups is a product of a bounded number of elementary matrices.
$\Gamma = SL(3,\mathbb{Z}) \text{ or } SL(2,\mathbb{Z}[\sqrt{5}]) \text{ or } SL(2,\mathbb{Z}[1/5])$ Thm (Witte, Lifschitz-Morris). <i>No actions on</i> S ¹ . $\phi: \Gamma \to \text{Homeo}(S^1), \text{ not} \approx \text{lin-frac}^* \Rightarrow \Gamma^{\phi} \text{ is finite.}$	Thm (Lifschitz-Morris). $\Gamma = SL(2, \mathbb{Z}[1/5]),$ $\phi: \Gamma \to \text{Homeo}_+(\mathbb{R}) \Rightarrow \Gamma^{\phi} \text{ is trivial.}$ <i>Proof: Combine</i> bdd generation <i>and</i> bdd orbits .

				U				
$\overline{U} =$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	* 1] ,	V	<u>/</u> =	1 *	$\begin{array}{c} 0 \\ 1 \end{array}$.

Thm (Liehl, Carter-Keller-Paige). $\Gamma \approx SL(2, \mathcal{O})$, \Rightarrow (\approx) Γ has bdd generation by \overline{U} and \underline{V} . I.e., $\Gamma \approx \overline{U}V\overline{U}V\cdots\overline{U}V.$

Thm (Lifschitz-Morris). $\Gamma \approx SL(2, \mathcal{O})$ acts on \mathbb{R} \Rightarrow every \overline{U} -orbit is bdd (and every V-orbit is bdd).

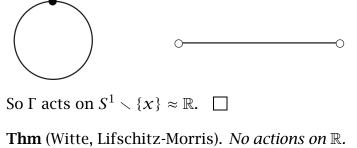
Cor. Every Γ -orbit is bdd, so Γ has a fixed pt. **Cor** [L-M]. \nexists *nontrivial* (*or-pres*) *action of* Γ *on* \mathbb{R} .

Proof. Let $F = \{$ fixed points $\}$ (closed).

I =component of $\mathbb{R} \smallsetminus F$ (Γ -invariant). Γ acts on *I* = open interval $\approx \mathbb{R}$. Γ has no fixed points in $I. \rightarrow \leftarrow$

.1

(and other applications of *bounded generation*) **Thm** (Ghys). ϕ : $\Gamma \rightarrow$ Homeo(S^1), *not* \approx *lin-frac** $\Rightarrow \Gamma^{\phi}$ has a fixed point (or finite orbit). **Cor.** \nexists *action on* $\mathbb{R} \Rightarrow \nexists$ *action on* S^1 (*). *Proof.* Suppose Γ acts on S^1 (not \approx lin-frac). Ghys: Γ has a fixed point.



 $\Rightarrow \Gamma^{\phi}$ is trivial. $\phi: \Gamma \to \operatorname{Homeo}_+(\mathbb{R})$

Orbits of unipotent subgroups are bounded.	Other applications of bounded generation.
Thm. SL(2, $\mathbb{Z}[1/p]$) acts on $\mathbb{R} \Rightarrow \overline{U}$ -orbits bdd. $\overline{u} = \begin{bmatrix} 1 & u \\ 0 & 1 \end{bmatrix}, \ \underline{v} = \begin{bmatrix} 1 & 0 \\ v & 1 \end{bmatrix}, \ \underline{\mathcal{P}} = \begin{bmatrix} p & 0 \\ 0 & 1/p \end{bmatrix}$ Commutation relations. $\mathbf{P}^{-n}\overline{1}\mathbf{P}^n \to \overline{0},$ $\mathbf{P}^{-n}\underline{1}\mathbf{P}^n \to \underline{\infty}.$	 Γ is <i>superrigid</i> (< ∞ irred reps of each dim) Γ has the <i>Congruence Subgroup Property</i> SL(3, Z) has <i>property</i> T (with explicit ε) (Ghys' Thm) action of Γ on S¹ has fixed pt (or finite orbit) if H²(Γ; R) = 0
Spse \overline{U} -orbit and \underline{V} -orbit of x not bdd above.	
Assume p fixes x . (p does have fixed pts, so ok.)	
Wolog $x \overline{1} > x \underline{1}$. So $(x \overline{1}) - p^n > (x \underline{1}) - p^n$.	
LHS = $(x \overline{1}) p^n = x(p^{-n} \overline{1} p^n) \rightarrow x(\overline{0}) = x < \infty.$	
$\operatorname{RHS} = (x \underline{1}) \operatorname{p}^{n} = x (\operatorname{p}^{-n} \underline{1} \operatorname{p}^{n}) \to x (\underline{\infty}) \to \infty.$	
$\rightarrow \leftarrow$	
Similar for SL(2, $\mathbb{Z}[\alpha]$). $p \mapsto \omega, \omega = \text{unit of infinite order.}$	

Thm (Ghys). Action of Γ on S^1 has fixed $pt (\approx)$ if $H^1(\Gamma; \mathbb{R}) = 0$. *Proof.* Univ cover $\widetilde{S^1} = \mathbb{R}$ has action of $\widetilde{\Gamma}$. $\pi_1(S^1) = \mathbb{Z} \qquad \Rightarrow e \to \mathbb{Z} \to \widetilde{\Gamma} \to \Gamma \to e$. Extension defined by $\omega \in H^2(\Gamma; \mathbb{Z})$. $H^1(\Gamma; \mathbb{R}/\mathbb{Z}) \xrightarrow{\delta} H^2(\Gamma; \mathbb{Z}) \to H^2(\Gamma; \mathbb{R}) = 0$ $\omega = \delta(\alpha)$ for some homo $\alpha: \Gamma \to \mathbb{R}/\mathbb{Z}$ \mathbb{R}/\mathbb{Z} abel $\Rightarrow \alpha$ trivial on Γ' $\Rightarrow \omega$ trivial on Γ' (finite index) So $\widetilde{\Gamma} \doteq \Gamma \times \mathbb{Z}$. Action of Γ on S^1 lifts to action of Γ on \mathbb{R} . Has fixed point [Lifschitz-Morris].

Thm. $\Gamma = SL(3, \mathbb{Z})$ has Kazhdan's property T. *Idea of proof.* Wish to show $H^1(\Gamma; \mathcal{H}) = 0$. Equivalent: Γ acts on \mathcal{H} by affine isometries $(\gamma(v) = Tv + w,$ *T* linear, $w \in \mathcal{H}$) \Rightarrow Γ has a fixed point. Enough to show Γ has a bounded orbit (then centroid of convex hull is fixed). By bounded generation, enough to show 1 0 0 0 1 * has bounded orbit. $0 \ 0 \ 1$ Use $\begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \cong \operatorname{SL}(2,\mathbb{Z}) \ltimes \mathbb{Z}^2$, $0 \ 0 \ 1$ show \mathbb{Z}^2 has bounded orbit.

Thm. SL(2, $\mathbb{Z}[\sqrt{5}]$) <i>is superrigid.</i>	<i>Key.</i> Eigenvalues of $\alpha(\overline{u})$ are algebraic.
I.e., $< \infty$ irreducible reps of each dimension.	Consider SL(2, $\mathbb{Z}[1/p]$).
<i>Idea of proof.</i> Suppose $\alpha: \Gamma \to GL(d, \mathbb{C})$.	$\begin{bmatrix} 1 & u \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} p & 0 \end{bmatrix}$
Show eigenvals of $\alpha(g)$ are alg'ic. (ctbly many)	$\overline{u} = \begin{bmatrix} 1 & u \\ 0 & 1 \end{bmatrix}, \ \underline{v} = \begin{bmatrix} 1 & 0 \\ v & 1 \end{bmatrix}, \ \underline{\mathcal{P}} = \begin{bmatrix} p & 0 \\ 0 & 1/p \end{bmatrix}$
\therefore trace($\alpha(g)$) cannot deform continuously.	$p^{-1}\overline{u} = \overline{u/p^2}$
$\therefore \alpha$ cannot deform continuously.	$\Rightarrow (p^{-1}\overline{u}p)^{p^2} = \overline{u}$
So $< \infty$ possibilities for α .	\Rightarrow eigenval of \overline{u} sats $\lambda^{p^2} = \lambda$
<i>Note.</i> Eigenvaluess of $\alpha(g)$ are algebraic	Apply α to calculation:
$\Leftrightarrow \alpha(g)$ satisfies a poly with \mathbb{Q} -coeffs	eigenval of $\alpha(\overline{u})$ sats $\lambda^{p^2} = \lambda$
$\Rightarrow \mathbb{Q}$ -span of $\langle \alpha(g) \rangle$ is finite dim'l.	So λ is algebraic.
<i>Key.</i> Eigenvalues of $\alpha(\overline{u})$ are algebraic.	
Therefore \mathbb{Q} -span of $\alpha(\overline{U})$ is finite dim'l.	
Since $\Gamma = \overline{U}V\overline{U}V\cdots\overline{U}V$,	
then Q-span of $\alpha(\Gamma)$ is finite dim'l.	
So Q-span of $\langle \alpha(g) \rangle$ is finite dim'l.	
SO = Span Of (X(g)) is infice unit i.	

<i>Recall.</i> $\Gamma \supset SL(3, \mathbb{Z})$ or $Sp(4, \mathbb{Z}) \Leftrightarrow \mathbb{Q}$ -rank $\Gamma \geq 2$	References
$\Rightarrow \Gamma$ does not act on S^1 (or \mathbb{R}).	M. Burger and N. Monod: Bounded cohomology of lattices
Work in progress.	in higher rank Lie groups. <i>J. Eur. Math. Soc.</i> 1 (1999), no. 2, 199-235. Erratum 1 (1999), no. 3, 338.
• In { $\Gamma \mid \mathbb{Q}$ -rank $\Gamma = 1$ (& \mathbb{R} -rank $G \ge 2$) },	É. Ghys: Groupes d'homéomorphismes du cercle et coho-
find shortest possible list of grps $\Gamma_1, \Gamma_2, \ldots$	mologie bornée, <i>Contemp. Math.</i> 58, III (1987) 81–106.
s.t. $\forall \Gamma, \exists \Gamma_i \subseteq \Gamma$ (\approx).	L. Lifschitz and D. Morris: Isotropic nonarchimedean <i>S</i> - arithmetic groups are not left orderable, <i>Comptes Rendus</i>
Almost finished (is ${}^{2}E_{6}$ on the list?)	Acad Sci. Paris, Ser. I 339 (2004), no. 6, 417-420.
(with V. Chernousov and L. Lifschitz)	D.W.Morris: Introduction to Arithmetic Groups (preprint).
SL(2, \mathcal{O}), SU($ x ^2 - y ^2 + a z ^2$) _{\mathcal{O}} , ^{3,6} D ₄ , ² E ₆ ???	http://people.uleth.ca/~dave.morris/ LectureNotes.shtml
• Prove unip subgrps of Γ_i have bdd orbits.	V. Platonov and A. Rapinchuk: <i>Algebraic Groups and Number Theory</i> , Academic Press, San Diego, 1991.
<i>Finished</i> (with L. Lifschitz).	A.S. Rapinchuk: The congruence subgroup problem for
• Prove unip subgrps bddly gen Γ_i .	arithmetic groups of finite width, <i>Soviet Math. Dokl.</i> 42 (1991), no. 2, 664–668.
Not done.	Y. Shalom: Bounded generation and Kazhdan's prop-
<i>Conclusion:</i> Conjecture true when \mathbb{Q} -rank $\Gamma \geq 1$.	erty (T), Inst. Hautes Études Sci. Publ. Math. 90 (1999), 145-168.
After that: Case where \mathbb{Q} -rank $\Gamma = 0$. (cocpct)	
Need new methods! (no unip elements in Γ)	