Orbits of Cartan subgroups	$G = \mathrm{SL}(n, \mathbb{R})$
on homogeneous spaces	$= (\mathbb{R}\text{-pts of})$ Zar conn, reductive \mathbb{Q} -group
(after George Tomanov and Barak Weiss)	$\Gamma = \mathrm{SL}(n, \mathbb{Z})$
Dave Witte Morris	= arithmetic subgroup of G
Department of Mathematics	$ \begin{vmatrix} A \\ A \\ B \\ A \\ B \\ C \\ C$
Oklahoma State University	0 0 *
Stillwater, OK 74078	= Cartan subgroup of G
	$= \text{maximal } \mathbb{R}\text{-split torus in } G$
	A acts on G/Γ : $(a, [g]) \mapsto a[g]$.
	$[g] = g\Gamma \text{ for } g \in G.$
	Ques. Which orbit closures are homogeneous?
	(As in Ratner's thm for unipotent subgrps
	$\dot{c} \exists subgroup \ L \supset A, \ \overline{A[g]} = L[g] \ ?$
	<i>Today.</i> Which orbits are closed .
	I.e., when can we take $L = A$?

$$\begin{split} Eg. \ G &= \operatorname{SL}(2,\mathbb{R}) \qquad \Gamma = \operatorname{SL}(2,\mathbb{Z}). \\ A\text{-orbit} &= \operatorname{geodesic} \\ A[g] \ \text{is closed} \\ &\Leftrightarrow \begin{cases} \operatorname{periodic} & a^{\ell}[g] = [g], \ \exists \ell \in \mathbb{R}^+ \\ & \text{or} \\ & \text{divergent} & a^t[g] \to \infty \ \text{as } t \to \pm \infty \end{cases} \\ &\Leftrightarrow \begin{cases} g^{-1}Ag \cap \operatorname{SL}(2,\mathbb{Z}) \ \text{is infinite} \\ & \text{or} \\ & \text{both } \mathbb{H}^2 \ \text{endpts of } Ag \ \text{are in } \mathbb{Q} \cup \{\infty\} \end{cases} \\ &\Leftrightarrow \begin{cases} g^{-1}Ag \ \text{is defined}/\mathbb{Q} \ \text{and } \mathbb{Q}\text{-anisotropic} \\ & \text{or} \\ & g^{-1}Ag \ \text{is defined}/\mathbb{Q} \ \text{and } \mathbb{Q}\text{-split} \end{cases} \\ &\Leftrightarrow g^{-1}Ag \ \text{is defined}/\mathbb{Q}. \\ \end{aligned}$$
This generalizes: $\begin{aligned} \mathbf{Thm} \ (\text{Tomanov and Weiss, 2001}). \\ & A[g] \ is \ closed \ \Leftrightarrow \ g^{-1}Ag \ is \ defined \ over \ \mathbb{Q}. \end{cases} \end{aligned}$ (More complicated for nonreductive groups.)

Thm. A[g] is closed $\Leftrightarrow g^{-1}Ag$ is defined over \mathbb{Q} . $Proof. (\Leftarrow)$ General fact: H any \mathbb{Q} -torus of G \Rightarrow H-orbit of [e] is closed. Therefore $(g^{-1}Ag)[e]$ is closed, so $A[g] = g(g^{-1}Ag)[e]$ is closed. \square We only need to prove (\Rightarrow) . Special case: Defn. Orbit of [g] divergent: $a[g] \to \infty$ as $a \to \infty$. \forall cpct $K \subset G/\Gamma$, \exists cpct $C \subset A$, $a \notin C \Rightarrow a[g] \notin K$. Rem. Every divergent orbit is closed. $(a \mapsto a[g]$ is proper map, so closed \rightarrow closed.) **Cor.** Orbit of [g] is divergent $\Leftrightarrow g^{-1}Ag$ is \mathbb{Q} -split.

1

Thm. $A[g]$ is closed $\Leftrightarrow g^{-1}Ag$ is defined over \mathbb{Q} .	Cor. Orbit of $[g]$ is divergent $\Leftrightarrow g^{-1}Ag$ is \mathbb{Q} -split.
Cor. Orbit of $[g]$ is divergent $\Leftrightarrow g^{-1}Ag$ is \mathbb{Q} -split. Proof of Thm from Cor. Let $T = g^{-1}Ag$. T-orbit of $[e]$ is closed. So $T[e] \cong T/(T \cap \Gamma)$.	We give a direct proof. Special case (Margulis). Assume $G = SL(n, \mathbb{R}), \Gamma = SL(n, \mathbb{Z}).$
$R = \text{Zariski closure of } T \cap \Gamma$ = Q-anisotropic torus $\subset T$. So $R/(T \cap \Gamma)$ is compact. Let $\overline{G} = C_G(R)/R$ and $\overline{T} = T/R$. • \overline{G} is a connected, reductive Q-group and • \overline{T} is a Cartan subgroup.	Lem (Mahler Compactness Criterion). Orbit of [g] is not divergent \Leftrightarrow \exists neigh Ω_0 of 0 in \mathbb{R}^n , \forall cpct $C \subset A$, $\exists a \notin C$, $ag\mathbb{Z}^n \cap \Omega_0 = \{0\}.$
$\overline{T}\text{-orbit of } [e] \text{ is closed, with no stabilizer} \\ \Rightarrow \text{divergent.} \\ \text{Cor tells us } \overline{T} \text{ is } \mathbb{Q}\text{-split.} \\ \text{In particular, it is defined over } \mathbb{Q} \text{ in } \overline{G}. \\ \text{Pull back to } G\text{: conclude } T \text{ is defined over } \mathbb{Q}. \ \Box$	

An idea from Kazhdan-Margulis: Lem. \exists neigh Ω of 0, finite $F \subset A, c > 1$, $\forall g \in G, \exists f \in F,$ $\forall v \in g\mathbb{Z}^n \cap \Omega,$ $\|fv\| \ge c \|v\|.$ Proof. Easy: \forall subspace $V \subsetneq \mathbb{R}^n, \exists f \in A, \text{ s.t.}$ $\|fv\| \ge c \|v\|$ for all $v \in V.$

Compactness of Grassman variety $\Rightarrow \exists$ finitely many f's to work for all V.

g unimodular \Rightarrow (span of $(g\mathbb{Z}^n \cap \Omega)$) $\neq \mathbb{R}^n$.

$$\begin{split} \mathbf{Lem.} & \forall g \in G, \, s.t. \, g \notin A \, G_{\mathbb{Q}}, \quad (G_{\mathbb{Q}} = \mathrm{SL}(n, \mathbb{Q})) \\ \forall \ cpct \ \Omega_1, \Omega_2 \subset \mathbb{R}^n, \ \forall \ cpct \ C \subset A, \\ & \exists a \in A \smallsetminus C, \ \forall v \in g \mathbb{Z}^n \smallsetminus 0, \\ & v \in \Omega_1 \Rightarrow av \notin \Omega_2. \end{split}$$
 $\begin{aligned} Proof. \ \text{Assumption on } g: \\ \text{ some coord axis does not intersect } g \mathbb{Z}^n \smallsetminus 0. \\ \text{Say } g \mathbb{Z}^n \cap \{(0, 0, \dots, 0, *)\} = \{0\}. \end{aligned}$ $\begin{aligned} \text{Let } a^t = \begin{bmatrix} e^t & e^t & \\ & \ddots & \\ & & e^t & \\ & & e^{-(n-1)t} \end{bmatrix}. \\ \text{Then } a^t v \to \infty \text{ for all nonzero } v \in g \mathbb{Z}^n. \end{split}$

So a large element of A takes the finitely many nonzero elements of $g\mathbb{Z}^n \cap \Omega$ far away.

Cor. Orbit of [g] is divergent $\Rightarrow g^{-1}Ag$ is Q-split.	Using 2nd lemma, choose $a_0 \notin C$, s.t.
	$0 \neq v \in g\mathbb{Z}^n, \exists c \in C, cv \in \Omega$
<i>Proof.</i> If $g \in A G_{\mathbb{Q}}$, then $g^{-1}Ag$ is \mathbb{Q} -split	$\Rightarrow a_0 v \notin \Omega_0.$
(because A is \mathbb{Q} -split). Thus, we assume $g \notin A G_{\mathbb{Q}}$ and show that the orbit is not divergent.	If $a_0 g \mathbb{Z}^n \cap \Omega_0 = \{0\}$, we are done. Otherwise, $\exists a_1 \in F$ that stretches $a_0 g \mathbb{Z}^n \cap \Omega$.
Mahler: we want $\Omega_0 \ni 0$, s.t.	Continue stretching, until
$\forall \text{ cpct } C \subset A, \exists a \notin C,$	$a_m \cdots a_1 a_0 g \mathbb{Z}^n \cap \Omega_0 = \{0\}.$
$ag\mathbb{Z}^n\cap\Omega_0=\{0\}.$	We are done, unless $a_m \cdots a_1 a_0 \in C$.
Choose a Kazhdan-Margulis neighborhood Ω ,	Since the intersection $\neq 0$ on the previous step,
with corresponding finite $F \subset A$ and $c > 1$.	$\exists v \in g\mathbb{Z}^n \setminus \{0\}, \text{ s.t. } a_{m-1} \cdots a_1 a_0 v \in \Omega_0.$
$\Omega_0 = \text{small ball around } 0, \text{ s.t. } f^{\pm 1} v \in \Omega_0 \Rightarrow v \in \Omega.$	We must have $a_0 v \in \Omega_0$ and
	$a_m \cdots a_1 a_0 v \in \Omega.$
Given cpct $C \subset A$.	This contradicts the choice of a_0 .
	For general G , Tomanov and Weiss generalize the
	three lemmas, using the adjoint representation.

Lem (Mahler Compactness Criterion). Orbit of [g] is not divergent \Leftrightarrow \exists neigh Ω_0 of 0 in \mathbb{R}^n , \forall cpct $C \subset A$, $\exists a \notin C$, $ag\mathbb{Z}^n \cap \Omega_0 = \{0\}.$

Use Fundamental Domain $\cup_q KS_t Mq$ to show similar, with Lie algebra \mathfrak{g} in place of \mathbb{R}^n :

Lem. Orbit of [g] is not divergent \Leftrightarrow \exists neighborhood Ω_0 of 0 in \mathfrak{g} , \forall cpct $C \subset A$, $\exists a \notin C$, $\operatorname{Ad}(ag)\mathfrak{g}_{\mathbb{Z}} \cap \Omega \not\supseteq$ horospherical set.

Defn. Horospherical set: basis of subspace conjugate to Lie algebra of unipotent radical of a maximal parabolic Q-subgroup.

Lem. $\exists neigh \ \Omega \ of \ 0, \ finite \ F \subset A, \ c > 1,$ $\forall g \in G, \ \exists f \in F, \quad \forall v \in g\mathbb{Z}^n \cap \Omega,$ $\|fv\| \ge c\|v\|.$ Just replace $g\mathbb{Z}^n$ with $(\operatorname{Ad} g)\mathfrak{g}_{\mathbb{Z}}.$ $Proof. \ A \subset P = \text{minimal parabolic } \mathbb{R}\text{-subgroup}.$ Kazhdan-Margulis: Subalgebra gen'd by $((\operatorname{Ad} g)\mathfrak{g}_{\mathbb{Z}}) \cap \Omega$ is unipotent $\subset \mathfrak{q}_{\text{unip}}, \exists \text{minimal parabolic } \mathbb{R}\text{-subgroup } Q.$ Suffices to show: $\exists w \in W$ (Weyl group), s.t. $wQ_{\text{unip}}w^{-1} \cap P^- = e.$ $\exists g \in G, \ Q = g^{-1}Pg.$ Bruhat: g = bcw with $b \in P, \ c \in P^-, \ w \in W.$ Then $wQ_{\text{unip}}w^{-1} = wg^{-1}P_{\text{unip}}gw^{-1} = c^{-1}P_{\text{unip}}c$ does not intersect P^- . (Since $U \cap P^- = e$, and $c \in N_G(P^-).$)

4

Now assume G is Q-simple (wolog). Lem. $\forall g \in G, s.t. g \notin A G_Q,$ $\forall \ cpct \ \Omega_1, \Omega_2 \subset \mathbb{R}^n, \ \forall \ cpct \ C \subset A,$ $\exists a \in A \smallsetminus C, \ \forall v \in g \mathbb{Z}^n \smallsetminus 0,$ $v \in \Omega_1 \Rightarrow av \notin \Omega_2.$ Let $S \subset A$ be a maximal Q-split torus of G. (Maybe have to replace A by a conjugate.) Lem C. $\forall g \in G, \ s.t. \ g \notin C_G(S) \ G_Q,$ $and \ (g^{-1}Sg) \cap \Gamma \ is \ finite,$ $\forall \ cpct \ \Omega_1, \Omega_2 \subset g, \ \forall \ C \subset A,$ $\exists a \in S \smallsetminus C,$ $\forall \ horospherical \ subset \ H \ of (Adg)g_{\mathbb{Z}},$ $H \subset \Omega_1 \Rightarrow (Ada)H \not\subset \Omega_2.$ Rem. Because all maximal Q-split tori are conju-

is equivalent to saying that $g^{-1}Sg$ is not Q-split. *Proof of Lem C.* $A \subset P = \min$ 'l parab Q-subgrp. For $w \in W_{\mathbb{Q}}$ (Weyl group):

gate under $G_{\mathbb{Q}}$ the assumption that $g \notin C_G(S) G_{\mathbb{Q}}$,

Assume $(\mathrm{Ad}w)\mathfrak{p} \cap (\mathrm{Ad}g)\mathfrak{g}_{\mathbb{Z}} \supset$ horo subset H^w (else easy).

Let $Q^w = N_G(\text{span of } H^w)$.

$$g^{-1}Q^{w}g = N_{G}(\text{span of } (\text{Ad}g^{-1})H^{w})$$
$$= N_{G}(\text{span of subset of } \mathfrak{g}_{\mathbb{Z}})$$
$$\Rightarrow g^{-1}Q^{w}g \text{ is defined over } \mathbb{Q}.$$

$$\mathfrak{q}_{\mathrm{unip}}^w = (\text{span of } H^w) \subset w\mathfrak{p}w^{-1}$$

so $wPw^{-1} \subset Q^w$.

Thus, the lemma implies $g^{-1}Sg$ is defined over \mathbb{Q} .

Since (by assumption) $(g^{-1}Sg) \cap \Gamma$ is finite, we conclude that $g^{-1}Sg$ is Q-split.

Need way to show $g^{-1}Sg$ is Q-split:

Lem.
•
$$g \in G$$
,
• $A \subset P = minimal \ parabolic \ Q-subgroup$,
• $\forall w \in W_{\mathbb{Q}}, \exists \ proper \ Q^w \supset w^{-1}Pw$
 $s.t. \ g^{-1}Q^wg \ is \ defined \ over \ Q$,
 $\Rightarrow \ g^{-1}Sg \ is \ defined \ over \ Q$.

Proof. $g^{-1}Q^w g$ def'd over $\mathbb{Q} \Rightarrow \forall \sigma \in \operatorname{Gal}(\mathbb{C}/\mathbb{Q}),$ • $\sigma(Q^w) \supset \sigma(w^{-1}Pw) = w^{-1}Pw$, and • $g^{-1}Q^w g = \sigma(g^{-1}Q^w g) = \sigma(g^{-1}) \sigma(Q^w)\sigma(g)$ $Q^w, \sigma(Q^w)$ are conj, and contain same Borel, so $Q^w = \sigma(Q^w).$ Thus, $\sigma(g)g^{-1} \in \bigcap_{w \in W}Q^w = C_G(S).$ So $g^{-1}Sg$ is defined over \mathbb{Q} .

Lem.

• $P = minimal \ parabolic \ Q$ -subgroup of G,

• $S = maximal \mathbb{Q}$ -split torus of P,

•
$$\mathbb{Q}$$
-subgrp $Q^w \supset w^{-1}Pw$, for each $w \in W_{\mathbb{Q}}$,

 $\Rightarrow \cap_{w \in W} Q^w = C_G(S).$

Proof. Following page: $\bigcap_{w \in W} Q^w$ is connected. So consider only the Lie algebra.

Note that this is a sum of root spaces \mathfrak{g}_{α} .

 α must be orthogonal to some root in each set Δ of simple Q-roots.

This is impossible: all roots of same length are conjugate under $W_{\mathbb{Q}}$.

Maximal root not orthogonal to any simple root. \Box

5

Lem. Let P_1, \ldots, P_n be parabolic subgroups of G. Cor. Suppose If $P_1 \cap \cdots \cap P_n$ contains a maximal torus of G, then • P is a minimal parabolic Q-subgroup, • $P_1 \cap \cdots \cap P_n$ is connected, and • Q is a conjugate of a parabolic \mathbb{Q} -subgroup, • \exists unipotent subgroup U of G, and • $Q_u \subset P$. normalized by $P_1 \cap \cdots \cap P_n$, $\Rightarrow P \subset Q$, and Q is defined over \mathbb{Q} . such that $(P_1 \cap \cdots \cap P_n)U$ is parabolic. Prove by induction on n from: Proof. $\exists Q' \supset P$, s.t. • Q' is conjugate to Q, and **Lem.** P and Q parabolic \Rightarrow • Q' is a \mathbb{Q} -subgroup. • $P \cap Q$ connected, and Preceding page: $(P \cap Q)Q_{\text{unip}}$ is parabolic. • $(P \cap Q)P_{\text{unip}}$ is parabolic. Contained in both P and Q, *Proof.* Parabs are conn, so suffices to show latter. so contained in both Q' and Q. $T = \max$ 'l torus contained in both P and Q. Therefore Q' = Q. For root α , show $(\mathfrak{p} \cap \mathfrak{q}) + \mathfrak{p}_{unip} \supset$ either \mathfrak{g}_{α} or $\mathfrak{g}_{-\alpha}$. Neither \mathfrak{g}_{α} nor $\mathfrak{g}_{-\alpha}$ is in $\mathfrak{p}_{unip} \Rightarrow$ both are in \mathfrak{p} , and one or the other is in \mathfrak{q} .

References

 G. Tomanov and B. Weiss: Closed orbits for actions of maximal tori on homogeneous spaces, Duke Math. J. (to appear). http://www.math.sunysb.edu/ 	
cgi-bin/preprint.pl?ims01-11	