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Which homogeneous spaces have a tessellation?

H = closed, connected subgroup of G,
so G/H is a “homogeneous space.”

Question. Does G/H have a tessellation?

I.e., is there a discrete subgroup I' of G, such that
e ['\G/H is compact

and

o I' acts properly discontinuously on G/H ?

Defn. T' acts properly discontinuously on X:
YV compact F' C X,
{~veT |~vFNF (0} is finite.

(In particular, all orbits are discrete.)



G = SL(n,R)
= (Zariski) connected, almost simple Lie grp
e SL(n,R), SL(n,C), SL(n, H)
e SO(m,n), SU(m,n), Sp(n,R)
e Sp(m,n), SO(n,C), Sp(n, C), SO(n, H)

e finitely many exceptional groups
Classical examples.
If G/H is compact: let I' = e.
If H is compact: let I' be a lattice in G.
Defn. T' is a (cocompact) lattice in G:
e [ is discrete
e ['\(G is compact.

There is a lattice in every simple G |Borel].
(Idea: G N GL(n,Z) is a lattice in G.)

Assumption. Neither H nor G/H is compact.
Therefore I' must be infinite

and I' cannot be a lattice in G.



Eg. G = GL(2,R) is transitive on X = R — {0}.

So X =2G/H,

where H = Stabg(e1) = (1 *)

0 =x
Let T; = {v e R? |2 < [jo]| < 2" 1,

J
We have ((2) (2)) Ti:Ti—I—j7

so each T} is a fund dom for I' = < (

So X has a tessellation.
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Eg. G = SL(2,R) is transitive on X = R* — {0}.
So X =2G/H,

where H = Stabg(e1) = <(1) T)

Let F' = unit circle (compact).

Vge G, gFNEF # 1)
= no infinite subgrp acts properly disc’ly
= I is finite
= X does not have a tessellation.



Prop (Calabi-Markus phenomenon).
depet F C G/H, s.t. Vg e G, gFNF # )
= G /H does not have a tessellation.

Group-theoretic restatement.

3 cpct subset C' C G, such that G = CHC
= G/H does not have a tessellation.

Eg. G = SL(n,R)

K = SO(n) = {rotations} (compact)
*

I diagonal (“split torus”)
*
1 % * *
( 1 % % \
N — N upper triangular

.k
\ 1/
Cartan decomposition. G = KAK

Fact. G = KNK |Kostant|

Cor. [fACH orNCH, then G=KHK,

so G/H does not have a tessellation.



Prop. G = SL(2,R)
= G /H does not have a tessellation.

Proof. dim A = 1.

A—i—
€ r———————————— >
ple) = e, lim p(h) =c0 = pu(H)=A"

h— oo

le., A" Cc KHK.
So G=KAYK c KHK.

Rem. Same proof whenever dim A = 1.
e SL(2,R), SL(2,C), SL(2, H)
® SO(l,n), SU(lan)a Sp(lan)7 F4,1

Next case. dim A = 2.
e SL(3,R), SL(3,C), SL(3,H)
¢ SO(Q,R), SU(Q,’R), Sp(Qan)

e finitely many others

Thm (Benoist, Oh-Witte).
G = SL(3,R), SL(3,C), SL(3, H)
= G /H does not have a tessellation.



Given g € G.
G=KAK = dae€ A, st. g€ KaK.

But a is not unique

ar{(* )]

= “positive Weyl chamber.”

Then Jla € AT, s.t. g € KaK.

Defn (Cartan projection). u:G — AT
by g € K pu(g) K.
(4 18 continuous and proper.



Henceforth assume H C AN (triangular)
(G = KAN “=” KH = KH' with H C AN.)

Thm (Oh-Witte). G = SO(2,n), n even.
G/H has a tessellation iff

e dim H =n; and

o u(H) ~ wall of A™.

)
(Hy)

w(H,
L

Thm (lozzi-Witte). G = SU(2,n), n even.
G/H has a tessellation iff

e dim H = 2n; and

o u(H) ~ wall of A™.
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We explicitly describe the possible subgroups H.

(In fact, we calculate u(H) for every connected
subgroup of AN.)

Thm (Oh-Witte). G = SO(2,n). TFAE:
e H~S0O(1,n)N AN
e dimH =n and u(H) ~ L
e dimH >n and u(H) 2 Lo

Prop (Oh-Witte). G = SO(2,2m),
Hsy = SU(1,m) N AN
= u(Hsy) =~ Lo and dim Hgy = 2m = n.

Thm (Oh-Witte). G = SO(2,2m). TFAE:
e H ~ certain deformations of Hsy
e dim H =2m and pu(H) =~ Lo
o dim H > 2m and u(H) 2 L.

Thm (lozzi-Witte). G = SU(2,n).
Similar conclusions, except:

e SO(1,n) — SU(1,n)

e SU(1,m) — Sp(1,m)

e dimn — dim2n



Conj. The homogeneous spaces
SO(2,2m + 1)/SU(1, m)
and
SU(2,2m +1)/Sp(1,m)

do not have tessellations.

Thm. G =50(2,2m + 1), SU(2,2m + 1).

Congecture = G /H does not have a tessellation.

Similar methods should apply to Sp(2,n)
and other cases with dim A = 2.

Not if dim A > 3.

11
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Thm (Benoist, Kobayashi). I proper on G/H
& (1) diverges from p(H) in AT

i.e., V¥V cpet C C A, w(T)Nu(H)C is finite.
Cor. Assume

o dimA = 2;

o L, and Ly are the two walls of AT ;

o u(H;)~ L; fori=1,2;

o I' acts properly on G/H.
Then T" acts properly on either G/Hy, or G/Hs.

Proof. If u(H) contains (=) u(Hy) or u(Hs),
the conclusion follows from Benoist-Kobayashi.

Thus, WMA p(H) diverges from both walls.

Either u(I') diverges from one of the walls (done);
or I' has at least two ends.

We will see below that this is impossible.
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proper not proper
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Prop. G/H = KxR% d=dim(AN)—dimH.

homeo

Proof. G = KAN, and AN/H = R% [Mostow]

homeo

Cor. I'\G/H tessellation = ' has only one end.

Proof. We have d > 1 (else H contains A or N).

Thm (Kobayashi). If I' acts properly on G/H,
then

cohodimg(I') < dim(AN) — dim H
with equality iff T\G/H is compact.

Cor. IfT'\G/H is a tessellation, then
dim H > min{dim Hy,dim Hs}.

Proof. We may assume I acts properly on G/ Hj.
dim(AN) — dim H = cohodimg(T")
< dim(AN) — dim H,



Proof. H?(T'; HI(K; A)) = HP(I'; HY(G/H; A))
= HPTY(T\G/H; A) (spectral sequence)
For N = cohodimg(I'), we have
HN(T; A) =2 gNTdmE MG/ H: A)
so N < dim(I'\G/H) — dim K
= dim(AN) — dim H
with equality iff I'\G/H is compact.
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SO(2,n) = Isom (vlvn+2 + voUp1 + Zn_ vf)

SU(2,n) = Isom (zlzn+2 + 29211 + Z |25 )

su2,n): ([t T om x )
oy y 7N,
a+n={4 0 -y -z |
—t2 —¢
\\ _tl ) y,
ti,ts € R, T,y €C" 2 ¢,neC, xyeciR

50(2,n) = su(2,n) N Mat,, 1 2(R)

o o+

Roots of s0(2,n) Roots of su(2,n)



Thm (Oh-Witte). G = SO(2,n), n even.
G/H has a tessellation iff

e H~SO(1,n)NAN; or

e H~ Hp

Hp is a generalization of SU(1,n/2) N AN:

( AN

t 0 X n 0 N n—9
. N r €R
hp = < t B(xz) 0 -—n tneR
\

B:R"? — R™ 2 has no real eigenvalues

Thm (Iozzi-Witte). G = SU(2,n), n even.
G/H has a tessellation iff
e H~SU(1,n)NAN; or

o H ~ ﬁB
Hp is a generalization of Sp(1,n/2) N AN:
( — T cCn?
X t 0 X M X L ER
hp = < t B(x) —x -7 neC
\ x € 1R

B:C"? — C" 2 anti-symplectic R-linear, s.t.
{Z,B7 } linearly independent over C



