Tessellations of homogeneous spaces of SU(2, n)

Dave Witte

Department of Mathematics
Oklahoma State University
Stillwater, OK 74078

dwitte@math.okstate.edu
http://www.math.okstate.edu/~dwitte

Joint work with Hee Oh
heeoh@math.princeton.edu
and Alessandra Iozzi
iozzi@math.umd.edu

Classical example. Tilings of the Euclidean plane.

Which homogeneous spaces have a tessellation?

H =closed, connected subgroup of G, so G/H is a "homogeneous space."

Question. Does G/H have a tessellation?

I.e., is there a discrete subgroup Γ of G, such that

• $\Gamma \backslash G/H$ is compact

and

• Γ acts properly discontinuously on G/H?

Defn. Γ acts properly discontinuously on X: \forall compact $F \subset X$,

 $\{ \gamma \in \Gamma \mid \gamma F \cap F \neq \emptyset \}$ is finite.

(In particular, all orbits are discrete.)

 $G = \mathrm{SL}(n,\mathbb{R})$

- = (Zariski) connected, almost simple Lie grp
 - $SL(n, \mathbb{R}), SL(n, \mathbb{C}), SL(n, \mathbb{H})$
 - SO(m, n), SU(m, n), $Sp(n, \mathbb{R})$
 - $\operatorname{Sp}(m,n)$, $\operatorname{SO}(n,\mathbb{C})$, $\operatorname{Sp}(n,\mathbb{C})$, $\operatorname{SO}(n,\mathbb{H})$
 - finitely many exceptional groups

Classical examples.

If G/H is compact: let $\Gamma = e$.

If H is compact: let Γ be a lattice in G.

Defn. Γ is a (cocompact) lattice in G:

- Γ is discrete
- $\Gamma \backslash G$ is compact.

There is a lattice in every simple G [Borel]. (Idea: $G \cap GL(n, \mathbb{Z})$ is a lattice in G.)

Assumption. Neither H nor G/H is compact. Therefore Γ must be infinite and Γ cannot be a lattice in G. Eg. $G = GL(2, \mathbb{R})$ is transitive on $X = \mathbb{R}^2 - \{0\}$. So $X \cong G/H$,

where $H = \operatorname{Stab}_G(\overrightarrow{e_1}) = \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix}$.

Let $T_i = \{ v \in \mathbb{R}^2 \mid 2^i \le ||v|| \le 2^{i+1} \}.$

We have $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}^j T_i = T_{i+j}$,

so each T_i is a fund dom for $\Gamma = \left\langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right\rangle$.

So X has a tessellation.

Eg. $G = \mathrm{SL}(2,\mathbb{R})$ is transitive on $X = \mathbb{R}^2 - \{0\}$. So $X \cong G/H$,

where
$$H = \operatorname{Stab}_G(\overrightarrow{e_1}) = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$$
.

Let F = unit circle (compact).

$$\forall g \in G, \ gF \cap F \neq \emptyset$$

- ⇒ no infinite subgrp acts properly disc'ly
- $\Rightarrow \Gamma$ is finite
- $\Rightarrow X$ does not have a tessellation.

Prop (Calabi-Markus phenomenon).

 $\exists \ cpct \ F \subset G/H, \ s.t. \ \forall g \in G, \ gF \cap F \neq \emptyset$ $\Rightarrow G/H \ does \ not \ have \ a \ tessellation.$

Group-theoretic restatement.

 \exists cpct sub**set** $C \subset G$, such that G = CHC $\Rightarrow G/H$ does not have a tessellation.

$$Eg. \ G = \operatorname{SL}(n, \mathbb{R})$$

$$K = \operatorname{SO}(n) = \{ \operatorname{rotations} \} \quad (\operatorname{compact})$$

$$A = \begin{pmatrix} * & \ddots & \\ & \ddots & \\ & * & \\ & & * \\ & & 1 \end{pmatrix} \quad \operatorname{diagonal} \; (\text{"split torus"})$$

$$N = \begin{pmatrix} 1 & * & * & * \\ & 1 & * & * \\ & & \ddots & * \\ & & & 1 \end{pmatrix} \quad \operatorname{upper \; triangular}$$

Cartan decomposition. G = KAK

Fact. G = KNK [Kostant]

Cor. If $A \subset H$ or $N \subset H$, then G = KHK, so G/H does not have a tessellation.

Prop. $G = SL(2, \mathbb{R})$ $\Rightarrow G/H \ does \ not \ have \ a \ tessellation.$

Proof. $\dim A = 1$.

$$\mu(e) = e, \qquad \lim_{h \to \infty} \mu(h) = \infty \qquad \Rightarrow \mu(H) = A^+$$

I.e., $A^+ \subset KHK$.

 A^+

So
$$G = KA^+K \subset KHK$$
.

Rem. Same proof whenever $\dim A = 1$.

- $SL(2,\mathbb{R})$, $SL(2,\mathbb{C})$, $SL(2,\mathbb{H})$
- SO(1, n), SU(1, n), Sp(1, n), $F_{4,1}$

Next case. $\dim A = 2$.

- $SL(3,\mathbb{R})$, $SL(3,\mathbb{C})$, $SL(3,\mathbb{H})$
- SO(2, n), SU(2, n), Sp(2, n)
- finitely many others

Thm (Benoist, Oh-Witte).

$$G = \mathrm{SL}(3,\mathbb{R}), \; \mathrm{SL}(3,\mathbb{C}), \; \mathrm{SL}(3,\mathbb{H})$$

 $\Rightarrow G/H$ does not have a tessellation.

Given $g \in G$.

 $G = KAK \Rightarrow \exists a \in A, \text{ s.t. } g \in KaK.$

But a is not unique

Let
$$A^+ = \left\{ \begin{pmatrix} t \\ 1/t \end{pmatrix} \middle| t \ge 1 \right\}$$

= "positive Weyl chamber."

Then $\exists ! a \in A^+$, s.t. $g \in KaK$.

Defin (Cartan projection). $\mu: G \to A^+$ by $g \in K \mu(g) K$.

 μ is continuous and proper.

Henceforth assume $H \subset AN$ (triangular) $(G = KAN "\Rightarrow" KH = KH' \text{ with } H' \subset AN.)$

Thm (Oh-Witte). G = SO(2, n), n even. G/H has a tessellation iff

- $\dim H = n$; and
- $\mu(H) \approx wall \ of A^+$.

Thm (Iozzi-Witte). G = SU(2, n), n even. G/H has a tessellation iff

- $\dim H = 2n$; and
- $\mu(H) \approx wall \ of \ A^+$.

We explicitly describe the possible subgroups H. (In fact, we calculate $\mu(H)$ for every connected subgroup of AN.)

Thm (Oh-Witte). G = SO(2, n). TFAE:

- $H \sim SO(1, n) \cap AN$
- dim H = n and $\mu(H) \approx L_1$
- dim $H \ge n$ and $\mu(H) \not\supset L_2$

Prop (Oh-Witte). G = SO(2, 2m), $H_{SU} = SU(1, m) \cap AN$ $\Rightarrow \mu(H_{SU}) \approx L_2 \text{ and } \dim H_{SU} = 2m = n$.

Thm (Oh-Witte). G = SO(2, 2m). TFAE:

- $H \sim certain \ deformations \ of \ H_{\rm SU}$
- dim H = 2m and $\mu(H) \approx L_2$
- dim $H \ge 2m$ and $\mu(H) \not\supset L_1$.

Thm (Iozzi-Witte). G = SU(2, n).

Similar conclusions, except:

- $SO(1,n) \mapsto SU(1,n)$
- $SU(1,m) \mapsto Sp(1,m)$
- $\dim n \mapsto \dim 2n$

Conj. The homogeneous spaces

$$SO(2, 2m + 1)/SU(1, m)$$

and

$$SU(2, 2m + 1)/Sp(1, m)$$

do not have tessellations.

Thm. G = SO(2, 2m + 1), SU(2, 2m + 1). Conjecture $\Rightarrow G/H$ does not have a tessellation.

Similar methods should apply to Sp(2, n) and other cases with dim A = 2.

Not if $\dim A \geq 3$.

Thm (Benoist, Kobayashi). Γ proper on G/H $\Leftrightarrow \mu(\Gamma)$ diverges from $\mu(H)$ in A^+ i.e., \forall cpct $C \subset A$, $\mu(\Gamma) \cap \mu(H)C$ is finite.

Cor. Assume

- $\dim A = 2$;
- L_1 and L_2 are the two walls of A^+ ;
- $\mu(H_i) \approx L_i \text{ for } i = 1, 2;$
- Γ acts properly on G/H.

Then Γ acts properly on either G/H_1 or G/H_2 .

Proof. If $\mu(H)$ contains (\approx) $\mu(H_1)$ or $\mu(H_2)$, the conclusion follows from Benoist-Kobayashi.

Thus, WMA $\mu(H)$ diverges from both walls.

Either $\mu(\Gamma)$ diverges from one of the walls (done); or Γ has at least two ends.

We will see below that this is impossible.

Prop. $G/H \cong_{\text{homeo}} K \times \mathbb{R}^d$, $d = \dim(AN) - \dim H$.

Proof. G = KAN, and $AN/H \cong_{\text{homeo}} \mathbb{R}^d$ [Mostow]

Cor. $\Gamma \backslash G/H$ tessellation $\Rightarrow \Gamma$ has only one end.

Proof. We have d > 1 (else H contains A or N).

Thm (Kobayashi). If Γ acts properly on G/H, then

 $\operatorname{cohodim}_{\mathbb{R}}(\Gamma) \leq \dim(AN) - \dim H$ with equality iff $\Gamma \backslash G/H$ is compact.

Cor. If $\Gamma \backslash G/H$ is a tessellation, then $\dim H \ge \min\{\dim H_1, \dim H_2\}.$

Proof. We may assume Γ acts properly on G/H_1 . $\dim(AN) - \dim H = \operatorname{cohodim}_{\mathbb{R}}(\Gamma)$ $\leq \dim(AN) - \dim H_1$

Proof.
$$H^p(\Gamma; H^q(K; A)) = H^p(\Gamma; H^q(G/H; A))$$

 $\Rightarrow H^{p+q}(\Gamma \backslash G/H; A)$ (spectral sequence)

For
$$N = \operatorname{cohodim}_{\mathbb{R}}(\Gamma)$$
, we have $H^{N}(\Gamma; A) \cong H^{N+\dim K}(\Gamma \backslash G/H; A)$

so
$$N \le \dim(\Gamma \backslash G/H) - \dim K$$

= $\dim(AN) - \dim H$

with equality iff $\Gamma \backslash G/H$ is compact.

References

- Y. Benoist, Actions propres sur les espaces homogènes réductifs, Ann. Math. 144 (1996) 315–347.
- A.Iozzi & D.Witte, Tessellations of homogeneous spaces of SU(2, n) (in preparation).
- T. Kobayashi, Discontinuous groups and Clifford Klein forms of pseudo-Riemannian homogeneous manifolds, in: B. Ørsted & H. Schlichtkrull, eds., Algebraic and Analytic Methods in Representation Theory, Academic Press, New York, 1997, pp. 99–165.
- B. Kostant, On convexity, the Weyl group, and the Iwasawa decomposition, Ann. Sc. ENS. 6 (1973) 413–455.
- F. Labourie, Quelques résultats récents sur les espaces localement homogènes compacts, in: P. de Bartolomeis, F. Tricerri and E. Vesentini, eds., *Manifolds and Geometry*, Symposia Mathematica, v. XXXVI, Cambridge U. Press, 1996.
- H.Oh & D.Witte, Cartan-decomposition subgroups of SO(2, n) (preprint).
- H.Oh & D.Witte, Compact Clifford-Klein forms of homogeneous spaces of SO(2, n) (preprint).
- H.Oh & D.Witte, New examples of compact Clifford-Klein forms of homogeneous spaces of SO(2, n). *Internat. Math. Res. Notices* (to appear).

SO(2, n) = Isom
$$\left(v_1 v_{n+2} + v_2 v_{n+1} + \sum_{i=3}^{n} v_i^2\right)$$

SU(2, n) = Isom $\left(z_1 \overline{z_{n+2}} + z_2 \overline{z_{n+1}} + \sum_{i=3}^{n} |z_i|^2\right)$

$$\mathfrak{su}(2,n): \left\{ \begin{pmatrix} t_1 & \phi & \overrightarrow{x} & \eta & \mathbf{x} \\ & t_2 & \overrightarrow{y} & \mathbf{y} & -\overline{\eta} \\ & 0 & -\overrightarrow{y}^* & -\overrightarrow{x}^* \\ & & -t_2 & -\phi \\ & & & -t_1 \end{pmatrix} \right\}$$

 $t_1, t_2 \in \mathbb{R}, \quad \overrightarrow{x}, \overrightarrow{y} \in \mathbb{C}^{n-2}, \quad \phi, \eta \in \mathbb{C}, \quad \mathsf{x}, \mathsf{y} \in i\mathbb{R}$

 $\mathfrak{so}(2,n) = \mathfrak{su}(2,n) \cap \mathrm{Mat}_{n+2}(\mathbb{R})$

Roots of $\mathfrak{so}(2,n)$

Roots of $\mathfrak{su}(2,n)$

Thm (Oh-Witte). G = SO(2, n), n even.

G/H has a tessellation iff

- $H \sim SO(1, n) \cap AN$; or
- $H \sim H_B$

 H_B is a generalization of $SU(1, n/2) \cap AN$:

$$\mathfrak{h}_{B} = \left\{ \begin{pmatrix} t & 0 & \overrightarrow{x} & \eta & 0 \\ & t & B(\overrightarrow{x}) & 0 & -\eta \end{pmatrix} \middle| \begin{array}{c} \overrightarrow{x} \in \mathbb{R}^{n-2} \\ t, \eta \in \mathbb{R} \end{array} \right\}$$

 $B:\mathbb{R}^{n-2}\to\mathbb{R}^{n-2}$ has no real eigenvalues

Thm (Iozzi-Witte). G = SU(2, n), n even.

G/H has a tessellation iff

- $H \sim \mathrm{SU}(1,n) \cap AN$; or
- \bullet $H \sim \hat{H}_B$

 \hat{H}_B is a generalization of $\mathrm{Sp}(1,n/2) \cap AN$:

$$\hat{\mathfrak{h}}_{B} = \left\{ \begin{pmatrix} t & 0 & \overrightarrow{x} & \eta & \mathsf{x} \\ & t & B(\overrightarrow{x}) & -\mathsf{x} & -\overline{\eta} \end{pmatrix} \middle| \begin{array}{c} \overrightarrow{x} \in \mathbb{C}^{n-2} \\ & t \in \mathbb{R} \\ & \eta \in \mathbb{C} \\ & \mathsf{x} \in i\mathbb{R} \end{array} \right\}$$

 $B: \mathbb{C}^{n-2} \to \mathbb{C}^{n-2}$ anti-symplectic \mathbb{R} -linear, s.t.

 $\{\overrightarrow{x}, B\overrightarrow{x}\}$ linearly independent over \mathbb{C}