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Abstract. It is easy to see that any group with a left-invariant total order
has a strictly convex norm. We use elementary measure theory and
dynamics to show that the converse is true for amenable groups. (A
similar argument had previously been used to show that left-orderable,
amenable groups are “locally indicable.”) This is joint work with Peter
Linnell of Virginia Tech.
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Question: ¿ ∃ a strictly convex norm ρ : G → R ?
I.e., balls are strictly convex:

ρ(g) < ρ(gh) or ρ(g) < ρ(gh−1) (if h ≠ e)

Summary of 1st lecture

act on R�
left-inv’t

total order

⇒ strictly convex
norm �

locally inv’t
partial ord �

extreme
points

⇒ unique
product

�⇐⇒ no zero
divisors

⇒ torsion
free

Question: Which implications can be reversed?
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Theorem (Linnell-Morris)
∃ strictly convex norm on G, and G is amenable

�⇒ G acts on R (orientation-preserving, faithfully).

Theorem (Linnell-Morris)
∃ locally invariant partial order, and G is amenable

�⇒ G has a left-invariant total order.

Proof gets left-inv’t total order by using recurrence.
1 amenability: G has a locally inv’t partial order ≺

that is recurrent.
2 Positive cone of ≺ is P = {g | g � e }.

This is pos cone of a left-inv’t total order.
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1) Recurrence
Defn. Topology of ptwise conv. on{loc inv’t orders}:

≺n → ≺ means ∀g,h ∈ G, ∀ large n,
g ≺n h ⇐⇒ g ≺ h.

Loc(G) is a compact metric space ⊂ 2G×G.

G acts (continuously) on Loc(G) by translation on right:
a ≺g b ⇐⇒ ag−1 ≺ bg−1

Poincaré Recurrence Thm
For each g ∈ G, ∃ recurrent ≺ ∈ Loc(G):

≺ is an accumulation point of {≺gn | n ∈ Z+ }.

G amenable (& countable) �⇒ can reverse quantifiers:
∃ ≺ ∈ Loc(G) that is recurrent for all g ∈ G.
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1) ∃ ≺ ∈ Loc(G) that is recurrent for all h ∈ G.

2) Positive cone P = {g | g � e }.

Define g� h ⇐⇒ h−1g� e ⇐⇒ h−1g ∈ P .
left-invariant: by definition ✓
antireflexive: e ∉ P ✓
total: ∀g ≠ e, either g ∈ P or g−1 ∈ P . ✓
transitive: P is closed under multiplication.

Spse g,h � e, with e � gh.

Then g � e recurrence

�⇒ ∃n, ghn � ehn � e � gh
recurrence

�⇒ ∃M, ghn−M � gh1−M .
However, g � gh, so g ≺ gh−1 ≺ gh−2 ≺ gh−3

≺ · · · ≺ ghn−M ≺ · · · ≺ gh1−M ≺ · · · →←
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Theorem (Linnell-Morris)
∃ strictly convex norm on G, and G is amenable

�⇒ G acts on R (orientation-preserving, faithfully).

Theorem (Linnell-Morris)
∃ locally invariant partial order, and G is amenable

�⇒ G has a left-invariant total order.

Exercise (Morris)
G has a recurrent left-invariant total order.

Proposition (P. Conrad, 1959)
G has a recurrent (Conradian) left-invariant total order

�⇒ G is locally indicable.

Every f.g. subgrp of G has quotient isomorphic to Z.
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bi-invariant
total order
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left-invariant
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�⇐⇒ act on R�
left-inv’t

total order
⇒

strictly
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norm

�
locally inv’t
partial ord

⇒ extreme
points

⇒ unique
product

�⇐⇒ no zero
divisors

⇒ torsion
free

For amenable groups:
“recurrent” � · · ·� “strictly convex”.
other two non-reversibles still do not reverse
what about the others?
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Wikipedia, Poincaré Recurrence Theorem.
http://en.wikipedia.org/w/index.php?title=Poincaré recurrence
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