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Abstract

As part of the “Zimmer program,” numerous authors have
studied volume-preserving actions of the group SL(n,A) on
compact manifolds, where A is either the ring Z of integers or
the field R of real numbers. On the other hand, very little
seems to be known about the intermediate case where A is
the field Q of rational numbers. As a first step in this
direction, we show that SL(n,Q) has no nontrivial, C∞,
volume-preserving action on any compact manifold of
dimension strictly less than n. The proof has two main
ingredients: a theorem of Zimmer tells us that the action of
any “S-arithmetic” subgroup must extend (a.e.) to a
measurable action of its profinite completion, and the
Congruence Subgroup Property provides a very nice
description of this profinite completion. This is joint work
with Robert J. Zimmer of the University of Chicago.
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Transformation groups

Given: group G, (compact, C∞) manifold M .
¿ What are the actions of G on M ?

I.e.: ¿ What are homos φ : G → Diff(M) ?

Question

¿ ∃ (almost faithful) action ?

Question

¿ ∃ action of G on some k-dimensional M ?

G acts on M
k �⇒ G acts on M

k × S1 = Mk+1

Zimmer program

G is large .
E.g., G = (noncompact) simple Lie group = SL(n,R).
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¿ ∃ action of G = SL(n,R) on some Mk ?

Answer

SL(n,R) acts on RPn−1, but not on any Mn−2.

Harder: actions must be volume-preserving.
M
k has G-invariant k-form (nowhere-vanishing)

Answer

SL(n,R) acts on SL(n,R)/ Γ = Mn
2−1, not on Mn

2−2.

Prop. SL(n,R) acts on M (vol-pres) ⇒ dimM ≥ dimG.
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Prop. SL(n,R) acts on M (vol-pres) ⇒ dimM ≥ dimG.

Poincaré Recurrence Theorem

U , gU , g2
U , . . . disjoint

⇒ vol
� �

g
i
U

�
=

�
vol(giU) =

�
vol(U) =∞.

⇒ vol(M) =∞. →←
∴ a.e. x ∈ M is recurrent (∃i, gix ≈ x)

Choose g ∈ G, x ∈ Rn�{0} with gx = λx and λ > 1.
Then g

i
x = λix →∞ �≈ x.

G/H has finite volume ⇒ G/NG(H
◦
) has finite vol.

But G/NG(H◦
) is algebraic variety � Rm (or RPm).

∴ NG(H◦
) = G ⇒ H

◦ = e ⇒ dim(G/H) = dimG.
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¿ ∃ action of G = SL(n,R) on some Mk ? (vol-pres)

Answer

SL(n,R) acts on SL(n,R)/ Γ = Mn
2−1, not on Mn

2−2.

Very hard

Replace SL(n,R) (connected) with SL(n,Z) (discrete).

Example: SL(n,Z) acts on Rn/Zn = Tn.

Conjecture (Zimmer, 1984)

Γ = SL(n,Z) or SL
�
n,Z[1/m]

�
, n ≥ 3

Γ acts on compact mfld M
k
, preserving volume

k < n

�⇒ Γ̇ acts trivially. (Γ -action factors through finite group)
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Conjecture (Zimmer, 1984)

SL(n,Z) does not act on M
n−1

, preserving volume.

Remark

Easy for k = 0, 1.
Known for k = 2 [Polterovich, Franks-Handel, Farb-Shalen]

Conjecture (Zimmer (?))

For k = 2, Γ can be any Kazhdan group.

Theorem (Margulis, 1974)

SL(n,Z) does not act on M
k
, preserving metric (if n ≥ 3).

I.e., ϕ : Γ → cpct Lie grp SO(N) �⇒ ϕ(Γ) finite.

• special case of Margulis Superrigidity Theorem
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Thm. ϕ : SL(n,Z)→ SO(N) �⇒ ϕ(Γ) finite (if n ≥ 3).

Exer.

�
2 1
1 1

�n�
1
0

�
≈ λnv+,

�
2 1
1 1

�−n�
1
0

�
≈ λnv−.

∴ For v ∈ Z2, nv =
�
±gnie1 with

�
|ni| < C logn.

For ĝ =
�
g

1

�
and v =

�
I v

0 1

�
, ĝ

n
v ĝ

−n = gnv .

Cor. Word length of vn = nv grows logarithmically.

Exer. g ∈ϕ(Γ) (& |g| =∞) ⇒ word len of gn is linear.
Hint: λ = eigenval of g

⇒ ∃ σ ∈ Gal(C/Q), |σ(λ)| > 1.
Eigenval of σ(g)n = σ(λ)n grows exponentially.
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Theorem (Margulis, 1974)

SL(n,Z) does not act on M
k
, preserving metric (if n ≥ 3).

I.e., ϕ : Γ → cpct Lie grp SO(N) �⇒ ϕ(Γ) finite.

Warning. Some cocompact lattices do have homos to SO(N).

Conjecture (Zimmer, 1984)

SL(n,Z) does not act on M
n−1

, preserving volume.

Theorem (Zimmer, 1984, 1991)

Action preserves meas’ble Riemannian metric.

— special case of cocycle superrigidity

Action factors through a

compact group K (measurably):

Γ �→ K� �

M
a.e.� X
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Conjecture (Zimmer, 1984)

SL(n,Z) does not act on M
n−1

, preserving volume.

Theorem (Morris-Zimmer, 2012)

SL(n,Q) does not act on M
n−1

, preserving volume.

(SL(n,Q) is a discrete group)

Remark

Proved thm for many other simple alg’ic grps G(Q)
(not just SL(n,Q))

Conjecture

Suffices to assume dimM < n
2 − 1 = dim SL(n,R).

Remark

Easy if n < 3, so we assume n ≥ 3.
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Theorem (Morris-Zimmer, 2012)

SL(n,Q) does not act on M
n−1

, preserving volume.

Γm = SL
�
n,Z[1/m]

�
⊂ SL(n,Q) =

�
m Γm = Γ∞.

Theorem (Zimmer, 1991)

Γm-action factors through a cpct

grp Km acting on Xm (measurably)

Γm �→ Km� �

M

a.e.� Xm

[Peter-Weyl] Km ⊂ ×∞
i=1 SO(Ni) �⇒ Km is pro-Lie

Theorem (Margulis, 1974)

ϕ : Γm → cpct Lie grp SO(Ni) �⇒ ϕ(Γ) is finite.

∴ Km is pro-finite
wolog= pro-finite completion of Γm.
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Γm-action factors through action of �Γm on M (a.e.)
Γm = SL

�
n,Z[1/m]

�
⊂ SL(n,Q) = Γ∞.

Theorem (Congruence Subgroup Property)

�Γ1 = ×
p

SL(n,Zp), �Γm = ×
p�m

SL(n,Zp)

Γ1 ⊂ Γm �⇒ �Γ1 → �Γm with kernel ×
p|m

SL(n,Zp)

So ×
p|m

SL(n,Zp) acts trivially on M (a.e.).
�
m ×

p|m
SL(n,Zp) dense in×

p
SL(n,Zp) = �Γ1

�⇒ �Γ1 acts trivially on M (a.e.)
�⇒ Γ1 acts trivially on M .

Action of Γ∞ has kernel, but Γ∞ = SL(n,Q) simple.
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Theorem (Morris-Zimmer, 2012)

SL(n,Q) does not act on M
n−1

, preserving volume.

Theorem (more general)

G is almost-simple Q-group, satisfying (∗), and

� homo G(R)◦ → GL(d;C).
�⇒ G(Q) does not act on M

d
, preserving volume.

1 Higher rank: ∀ place v of Q,
Qv-rank

�
every simple factor of G(Qv)

�
≥ 2.

�⇒ cocycle superrigidity and Kazhdan (T)

2 Congruence Subgroup Property

for large S-arithmetic subgroups of �G(Q).
(OK unless G is anisotropic of type An, D4, E6.)

3 �G(Q) is almost simple (not really necessary).
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