SL (n, \mathbb{Q}) has no volume-preserving actions on (n - 1)-dimensional compact manifolds

Dave Witte Morris

University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Joint work with Robert J. Zimmer

University of Chicago president@uchicago.edu

 $i \exists$ action of $G = SL(n, \mathbb{R})$ on some M^k ?

Answer

 $SL(n, \mathbb{R})$ acts on $\mathbb{R}P^{n-1}$, but not on any M^{n-2} .

Harder: actions must be *volume-preserving*. M^k has *G*-invariant *k*-form (nowhere-vanishing)

Answer

 $SL(n, \mathbb{R})$ acts on $SL(n, \mathbb{R}) / \Gamma = M^{n^2-1}$, not on M^{n^2-2} .

Prop. SL (n, \mathbb{R}) acts on M (vol-pres) $\Rightarrow \dim M \ge \dim G$.

Conjecture (Zimmer, 1984) SL (n, \mathbb{Z}) does not act on M^{n-1} , preserving volume. **Remark** • Easy for k = 0, 1. • Known for k = 2 [Polterovich, Franks-Handel, Farb-Shalen] **Conjecture (Zimmer (?)** For k = 2, Γ can be any Kazhdan group. **Theorem (Margulis, 1974)** SL (n, \mathbb{Z}) does not act on M^k , preserving metric (if $n \ge 3$). *I.e.*, $\varphi: \Gamma \rightarrow cpct$ Lie arp SO $(N) \implies \varphi(\Gamma)$ finite.

• special case of Margulis Superrigidity Theorem

Abstract

As part of the "Zimmer program," numerous authors have studied volume-preserving actions of the group SL(n, A) on compact manifolds, where A is either the ring \mathbb{Z} of integers or the field \mathbb{R} of real numbers. On the other hand, very little seems to be known about the intermediate case where A is the field \mathbb{Q} of rational numbers. As a first step in this direction, we show that $SL(n, \mathbb{Q})$ has no nontrivial, C^{∞} , volume-preserving action on any compact manifold of dimension strictly less than n. The proof has two main ingredients: a theorem of Zimmer tells us that the action of any "*S*-arithmetic" subgroup must extend (a.e.) to a measurable action of its profinite completion, and the Congruence Subgroup Property provides a very nice description of this profinite completion. This is joint work with Robert J. Zimmer of the University of Chicago.

Prop. SL (n, \mathbb{R}) acts on M (vol-pres) $\Rightarrow \dim M \ge \dim G$.

Poincaré Recurrence Theorem

 $U, gU, g^{2}U, \dots \text{ disjoint}$ $\Rightarrow \operatorname{vol}(\bigcup g^{i}U) = \sum \operatorname{vol}(g^{i}U) = \sum \operatorname{vol}(U) = \infty.$ $\Rightarrow \operatorname{vol}(M) = \infty. \quad \rightarrow \leftarrow$ $\therefore \text{ a.e. } x \in M \text{ is recurrent} \quad (\exists i, g^{i}x \approx x)$

Choose $g \in G$, $x \in \mathbb{R}^n \setminus \{0\}$ with $gx = \lambda x$ and $\lambda > 1$. Then $g^i x = \lambda^i x \to \infty \notin x$.

G/H has finite volume $\Rightarrow G/N_G(H^\circ)$ has finite vol. But $G/N_G(H^\circ)$ is **algebraic variety** $\hookrightarrow \mathbb{R}^m$ (or \mathbb{R}^{p^m}). $\therefore N_G(H^\circ) = G \Rightarrow H^\circ = e \Rightarrow \dim(G/H) = \dim G.$

Thm.
$$\varphi \colon \operatorname{SL}(n, \mathbb{Z}) \to \operatorname{SO}(N) \implies \varphi(\Gamma) \text{ finite } (\text{if } n \ge 3)$$

Exer. $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} \approx \lambda^n v_+, \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}^{-n} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \approx \lambda^n v_-.$
 $\therefore \text{ For } v \in \mathbb{Z}^2, nv = \sum \pm g^{n_i} e_1 \text{ with } \sum |n_i| < C \log n.$

For
$$\hat{g} = \begin{bmatrix} g \\ 1 \end{bmatrix}$$
 and $\overline{v} = \begin{bmatrix} I & v \\ 0 & 1 \end{bmatrix}$, $\hat{g}^n \, \overline{v} \, \hat{g}^{-n} = \overline{g^n}$

Cor. Word length of $\overline{v}^n = \overline{nv}$ grows logarithmically.

Exer. $g \in \varphi(\Gamma)$ (& $|g| = \infty$) \Rightarrow word len of g^n is linear. *Hint:* λ = eigenval of g $\Rightarrow \exists \sigma \in \text{Gal}(\mathbb{C}/\mathbb{Q}), |\sigma(\lambda)| > 1.$ Eigenval of $\sigma(g)^n = \sigma(\lambda)^n$ grows exponentially.

Transformation groups

Given: group *G*, (compact, C^{∞}) manifold *M*. *i* What are the actions of *G* on *M* ? I.e.: *i* What are homos $\phi: G \to \text{Diff}(M)$?

Question

 $i \exists (almost faithful) action ?$

Question

 $i \exists action of G on some k-dimensional M ?$ $<math display="block">G acts on M^k \implies G acts on M^k \times S^1 = M^{k+1}$

Zimmer program

G is *large*. E.g., G = (noncompact) simple Lie group $= SL(n, \mathbb{R})$.

 $\xi \exists action of G = SL(n, \mathbb{R}) on some M^k$? (vol-pres)

Answer

 $SL(n, \mathbb{R})$ acts on $SL(n, \mathbb{R})/\Gamma = M^{n^2-1}$, not on M^{n^2-2} .

Very hard

Replace $SL(n, \mathbb{R})$ (connected) with $SL(n, \mathbb{Z})$ (discrete).

Example: SL (n, \mathbb{Z}) acts on $\mathbb{R}^n / \mathbb{Z}^n = \mathbb{T}^n$.

Conjecture (Zimmer, 1984)

- $\Gamma = \operatorname{SL}(n, \mathbb{Z})$ or $\operatorname{SL}(n, \mathbb{Z}[1/m]), n \ge 3$
- Γ acts on compact mfld M^k , preserving volume
- k < n

 \overline{v}

 \Rightarrow $\dot{\Gamma}$ acts trivially. (Γ -action factors through finite group)

Theorem (Margulis, 1974)					
$SL(n, \mathbb{Z})$ does not act on M^k , preserving metric (if $n \ge 3$). <i>I.e.</i> , $\varphi: \Gamma \rightarrow cpct$ <i>Lie grp</i> $SO(N) \implies \varphi(\Gamma)$ finite.					
Warning. <i>Some cocompact</i> lattices <i>do</i> have homos to $SO(N)$.					
Conjecture (Zimmer, 1984)					
$SL(n, \mathbb{Z})$ does not act on M^{n-1} , preserving volume.					
Theorem (Zimmer, 1984, 1991)					
 Action preserves meas'ble Riemannian metric. – special case of cocycle superrigidity 					
• Action factors through a $\Gamma \longrightarrow K$					
compact group K (measurably): f					
$M \stackrel{a.e.}{\cong} X$					

Conjecture (Zimmer, 1984)

 $SL(n, \mathbb{Z})$ does not act on M^{n-1} , preserving volume.

Theorem (Morris-Zimmer, 2012)

 $SL(n, \mathbb{Q})$ does not act on M^{n-1} , preserving volume. (SL(n, \mathbb{Q}) is a **discrete** group)

Remark

Proved thm for many other simple alg'ic grps $G(\mathbb{Q})$ (not just $SL(n, \mathbb{Q})$)

Conjecture

Suffices to assume dim $M < n^2 - 1 = \dim SL(n, \mathbb{R})$.

Remark

Easy if n < 3, so we assume $n \ge 3$.

Theorem (Morris-Zimmer, 2012) SL(*n*, \mathbb{Q}) *does not act on* M^{n-1} , *preserving volume.* **Theorem (more general)** • **G** *is almost-simple* \mathbb{Q} *-group, satisfying* (*), *and* • \nexists *homo* $\mathbf{G}(\mathbb{R})^{\circ} \to \operatorname{GL}(d; \mathbb{C})$. \Rightarrow $\mathbf{G}(\mathbb{Q})$ *does not act on* M^d , *preserving volume.* • **Higher rank**: \forall place v of \mathbb{Q} , \mathbb{Q}_v -rank(every simple factor of $\mathbf{G}(\mathbb{Q}_v)$) ≥ 2 . \Rightarrow *cocycle superrigidity* and *Kazhdan* (*T*) • **Congruence Subgroup Property** for large *S*-arithmetic subgroups of $\widetilde{\mathbf{G}}(\mathbb{Q})$. (OK unless **G** is anisotropic of type A_n , D_4 , E_6 .) • $\widetilde{\mathbf{G}}(\mathbb{Q})$ is almost simple (not really necessary).

Theorem (Morris-Zimmer, 2012)					
$SL(n, \mathbb{Q})$ does not act on M^{n-1} , preserving volume.					
$\Gamma_m = \mathrm{SL}(n,\mathbb{Z}[1/m]) \subset \mathrm{SL}(n,\mathbb{Q}) = \bigcup_m \Gamma_m = \Gamma_\infty.$					
Theorem (Zimmer, 1991)	Γ_m	\rightarrow	K_m		
Γ_m -action factors through a cpct	ţ		ţ		
grp K_m acting on X_m (measurably)	Μ	a.e. ≅	X_m		
$[Peter-Weyl] K_m \subset X_{i=1}^{\infty} SO(N_i) \implies K_m \text{ is pro-Lie}$					
Theorem (Margulis, 1974)					

$\varphi \colon \Gamma_m \to cpct \ Lie \ grp \ \operatorname{SO}(N_i) \implies \varphi(\Gamma) \ is \ finite.$

 \therefore K_m is pro-finite $\stackrel{\text{wolog}}{=}$ pro-finite completion of Γ_m .

References

D.Fisher:

Groups acting on manifolds: around the Zimmer program, in *Geometry*, *Rigidity*, *and Group Actions*,

Univ. Chicago Press, Chicago, 2011, pp. 72-157. http://arxiv.org/abs/0809.4849

 D.W. Morris and R. J. Zimmer: Volume-preserving actions of simple algebraic Q-groups on low-dimensional manifolds, *J. Topol. Anal.* 4 (2012), no. 2, 115–120. http://arxiv.org/abs/1204.3139, http://dx.doi.org/10.1142/S1793525312500124 $\Gamma_{m}\text{-action factors through action of }\widehat{\Gamma}_{m} \text{ on } M \text{ (a.e.)}$ $\Gamma_{m} = \operatorname{SL}(n, \mathbb{Z}[1/m]) \subset \operatorname{SL}(n, \mathbb{Q}) = \Gamma_{\infty}.$ **Theorem (Congruence Subgroup Property)** $\widehat{\Gamma}_{1} = \underset{p}{\times} \operatorname{SL}(n, \mathbb{Z}_{p}), \quad \widehat{\Gamma}_{m} = \underset{p \nmid m}{\times} \operatorname{SL}(n, \mathbb{Z}_{p})$ $\Gamma_{1} \subset \Gamma_{m} \implies \widehat{\Gamma}_{1} \rightarrow \widehat{\Gamma}_{m} \quad \text{with kernel} \underset{p \mid m}{\times} \operatorname{SL}(n, \mathbb{Z}_{p})$ So $\underset{p \mid m}{\times} \operatorname{SL}(n, \mathbb{Z}_{p}) \text{ acts trivially on } M \text{ (a.e.).}$ $\bigcup_{m} \underset{p \mid m}{\times} \operatorname{SL}(n, \mathbb{Z}_{p}) \text{ dense in } \underset{p}{\times} \operatorname{SL}(n, \mathbb{Z}_{p}) = \widehat{\Gamma}_{1}$ $\implies \widehat{\Gamma}_{1} \text{ acts trivially on } M \text{ (a.e.)}$ $\implies \Gamma_{1} \text{ acts trivially on } M.$ Action of Γ_{∞} has kernel, but $\Gamma_{\infty} = \operatorname{SL}(n, \mathbb{Q})$ simple. \Box