









Want to get a bi-inv't order from a left-inv't order.
Definition
Assume: \prec is left-invariant, $g \in G$. Define $a \prec^g b \iff ag \prec bg$. Then \prec^g is left-invariant. <i>G acts on the set of left-invariant orders.</i>
Want $\prec^g = \prec$. I.e., \prec is a <i>fixed point</i> . Unfortunately, <i>g</i> might not have a fixed point. <i>Poincaré Recurrence Thm: g</i> has a <i>recurrent</i> point.
Theorem
\prec left-inv't order on <i>G</i> , recurrent for all <i>g</i> ∈ <i>G</i> \Rightarrow ∃ homo φ: <i>G</i> → abelian
ve Witte Morris (Univ. of Lethbridge) Using recurrence to study symmetries U of Virginia, March 2012 12 / 14

Theorem	What is <i>amenable</i> ?
\prec <i>left-inv't order on G, recurrent for all g</i> \in <i>G</i>	Example
$\Rightarrow \exists$ <i>homo</i> φ : <i>G</i> \rightarrow <i>abelian</i>	Free group $F_2 = \langle a, b \rangle$. Every el't starts with \$1:
 <i>Poincaré Recur Thm:</i> ∀g, ∃≺, ≺ is recurrent for g. Orders that are recurrent for g₁ may not be recurrent for g₂. To apply thm, need to <i>reverse the quantifiers</i>. Exercise (hard?) 	$f_0(g) = 1, \forall g \in F_2.$ Everyone passes their dollar to the person next to them who is closer to the identity: $f_1(g) = \$3 (\text{except } f_1(e) = \$5).$
<i>El'ts of an abelian group all agree on a recurrent pt:</i> $G \xrightarrow{abelian} \Rightarrow \exists p, s.t. p \text{ is recurrent for all } g \in G.$ <u>solvable</u> amenable (¿ G has no free subgroups ?)	Everyone richer, & money only moved bdd distance. <i>Definition.</i> This is a <i>Ponzi scheme</i> on F_2 .
Corollary	Definition
<i>G</i> amenable, acts on $\mathbb{R} \implies \exists$ homo $\varphi : G \rightarrow abelian$.	<i>G</i> is <i>amenable</i> \iff \nexists Ponzi scheme on <i>G</i> .
ave Witte Morris (Univ. of Lethbridge) Using recurrence to study symmetries U of Virginia, March 2012 13 / 14	ave Witte Morris (Univ. of Lethbridge) Using recurrence to study symmetries U of Virginia, March 2012 14/14