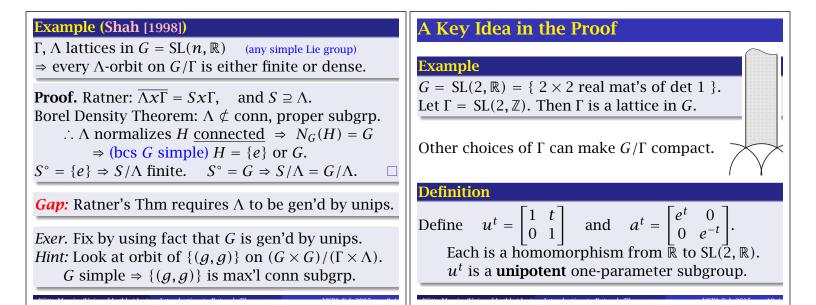
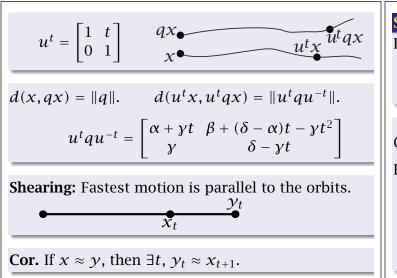
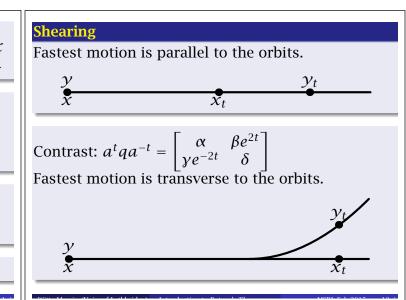


Homogeneous Dynamics study of dynamical systems on homogeneous spaces finite-volume homogeneous space G/Γ : • $G = \text{Lie group} = \text{closed subgroup of SL}(n, \mathbb{R})$ $\{n \times n \text{ mats with } \mathbb{R} \text{ entries, det} = 1\}$ = group & manifold • $\Gamma = -\text{closed subgroup of } G$ - lattice in G Coset space G/Γ is a manifold of finite volume.	Ratner's Theorem [1991]• finite-volume homogeneous space G/Γ • subgroup H gen'd by unipotent elements $\Rightarrow \overline{Hx\Gamma} = Sx\Gamma$ for some closed subgroup S of G .Also: $H \subseteq S$ and $(x\Gamma x^{-1}) \cap S$ is latt in S if H conn.Unipotent matrices are conjugate to an element of $\begin{bmatrix} 1 \\ 1 \\ 0 \\ \ddots \end{bmatrix} \end{bmatrix} \subset SL(n, \mathbb{R}).$
"dynamical system" = action of subgroup <i>H</i> of <i>G</i> $h: G/\Gamma \to G/\Gamma$ $h(x\Gamma) = hx\Gamma$ E.g., understand the <u>orbit</u> $Hx\Gamma$ in G/Γ	conjugate to an element of $\begin{bmatrix} 0 & \ddots & \\ & 1 \end{bmatrix} \int C SL(n, \mathbb{K})$. Exer. u unip $\Leftrightarrow (u - I)^n = 0 \Leftrightarrow$ char poly $(x - 1)^n$ \Leftrightarrow only eigenvalue is $1 \Rightarrow not$ diag'ble (unless $u = I$).

Applications of Ratner's Theorem	"Oppenheim Conjecture" (Margulis [1987]) Let <i>Q</i> be a real quadratic form in $n \ge 3$ variables
Example (Shah [1991], Payne [1999]) $M = \mathbb{H}^n / \Gamma, f \colon \mathbb{H}^n \to M, \mathbb{H}^2 \subset \mathbb{H}^n$ $\implies f(\mathbb{H}^2)$ is (immersed) submanifold of M .	(e.g., $x^2 - \sqrt{2}xy + \sqrt{3}z^2$). Then $Q(\mathbb{Z}^n)$ is dense in \mathbb{R} unless $\approx \mathbb{Z}$ -coefficients, or definite, or degenerate.
Idea of proof. • $\mathbb{H}^n = K \setminus SO(1, n)^\circ = K \setminus G \Rightarrow \pi : G/\Gamma \to M$ • $f(\mathbb{H}^2) = \pi(SO(1, 2)^\circ x\Gamma) = \pi(Hx\Gamma)$ $\overline{f(\mathbb{H}^2)} = \overline{\pi(Hx\Gamma)} = \pi(\overline{Hx\Gamma}) \overset{\text{Ratner}}{=} \pi(Sx\Gamma)$ = immersed submanifold. \square $H = SO(1, 2)^\circ \cong SL(2, \mathbb{R}) = [* *] = \langle [1 *], [1 0] \rangle$ is generated by unipotent elements	Proof for $n = 3$. Let $G = SL(3, \mathbb{R})$, $\Gamma = SL(3, \mathbb{Z})$, and $H = SO(Q) = \{h \in SL(3, \mathbb{R}) \mid Q(h\vec{x}) = Q(\vec{x})\}.$ Ratner: $\overline{H\Gamma} = S\Gamma$, for some subgroup $S \supseteq H$. <i>Algebra:</i> H is maximal in G , so $S = H$ or G . $S = H \implies Q$ has \mathbb{Z} -coefficients (\approx) So $H\Gamma$ is dense in G . Therefore $\overline{Q(\mathbb{Z}^3)} \supset Q(\overline{H\Gamma}\mathbb{Z}^3) = Q(G\mathbb{Z}^3) = Q(\mathbb{R}^3) = \mathbb{R}$.



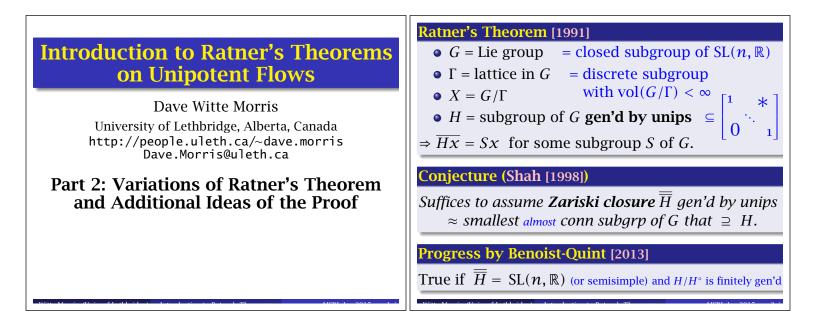


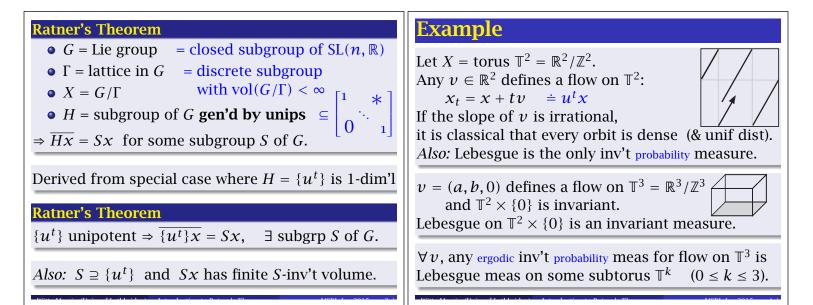


Further reading (and references to primary sources)

chapter of **forthcoming book on arithmetic grps free PDF file** on my web page (or the arxiv) http://people.uleth.ca/~dave.morris /books/IntroArithGroups.html

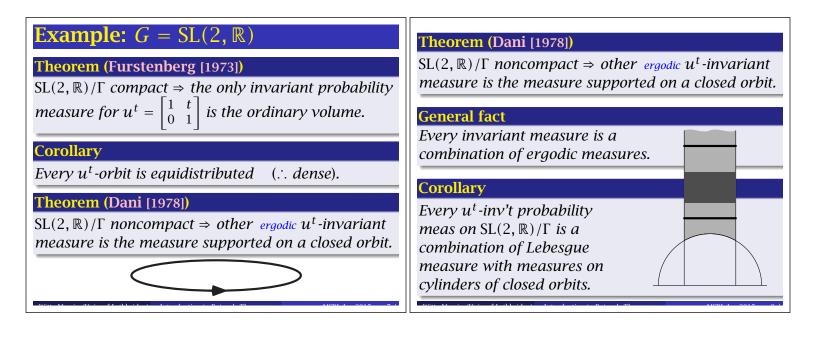
my book: *Ratner's Theorems on Unipotent Flows* free PDF file on my web page (or the arxiv) http://people.uleth.ca/~dave.morris /books/Ratner.html published by University of Chicago Press (2005) *** available from Amazon ***

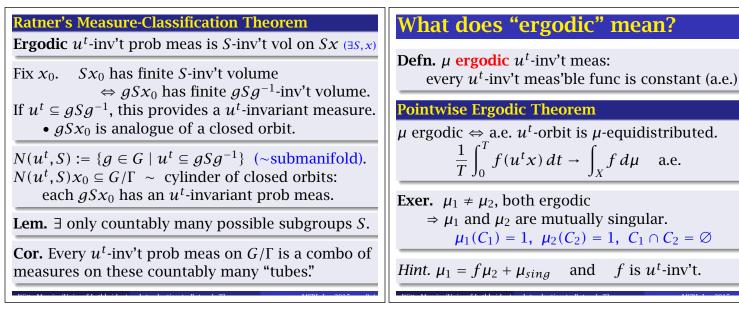


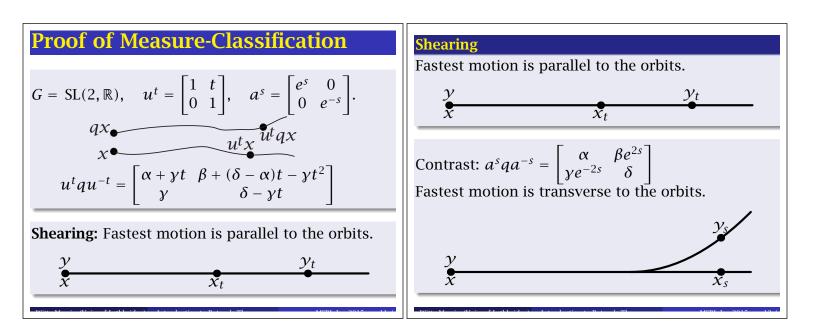


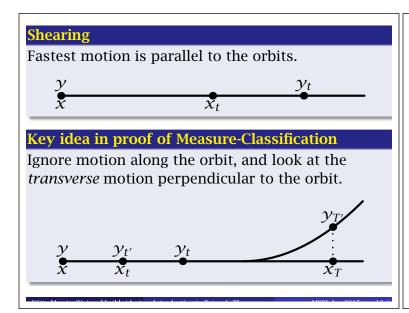
Ratner's Theorem on Orbit Closures		
$\{u^t\}$ unipotent $\Rightarrow \overline{\{u^t\}x} = Sx$, \exists subgrp <i>S</i> of <i>G</i> .		
Ratner's Equidistribution Theorem		
$\{u^t\}x$ is -dense- equidistributed in Sx :		
$\frac{1}{T} \int_0^T f(u^t x) dt \to \int_{Sx} f d \operatorname{vol} \text{for } f \in C_c(G/\Gamma)$ where $\operatorname{vol} = S$ -invariant volume form on Sx .		
where $vol = S$ -invariant volume form on Sx .		
Ratner's Measure-Classification Theorem		
Any ergodic u^t -invariant probability measure on G/Γ is S-invariant volume form on some Sx .		
is 5-invariant volume form on some 5x.		
Generalized to <i>p</i> -adic groups. ¿characteristic <i>p</i> ? [Ratner, Margulis-Tomanov] [Einsiedler, Ghosh, Mohammadi]		
Generalized to <i>p</i> -adic groups. ¿characteristic <i>p</i> ?		

measure-classification
$$\Rightarrow$$
 equidistribution
 $\frac{1}{T} \int_{0}^{T} f(u^{t}x) dt \rightarrow \int_{Sx} f d \text{ vol}$
Easy case
 $\mu = \text{unique } u^{t}\text{-inv't probability meas on } X \text{ (compact)}$
 $\Rightarrow \text{ every } u^{t}\text{-orbit is equidistributed.}$
Proof. $M_{T}(f) := \frac{1}{T} \int_{0}^{T} f(u^{t}x) dt$
 $M_{T}: C_{c}(X) \rightarrow \mathbb{C}$ positive linear functional
Riesz Rep Thm: $M_{T} \in \text{Meas}(X) = \{\text{prob meas on } X\}.$
Banach-Alaoglu: $\text{Meas}(X)$ weak* compact
 \Rightarrow subsequence $M_{T_{n}} \rightarrow M_{\infty}$ $u^{t}\text{-invariant.}$
Therefore $M_{\infty} = \mu$. So $M_{T}(f) \rightarrow \mu(f) = \int f d\mu$.









Example

$$u^{t} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}, u^{t} q u^{-t} = \begin{bmatrix} \alpha + \gamma t & \beta + (\delta - \alpha)t - \gamma t^{2} \\ \gamma & \delta - \gamma t \end{bmatrix}$$

Fastest motion is along $\{u^t\}$.

Ignoring this, largest terms are diagonal (in $\{a^s\}$)

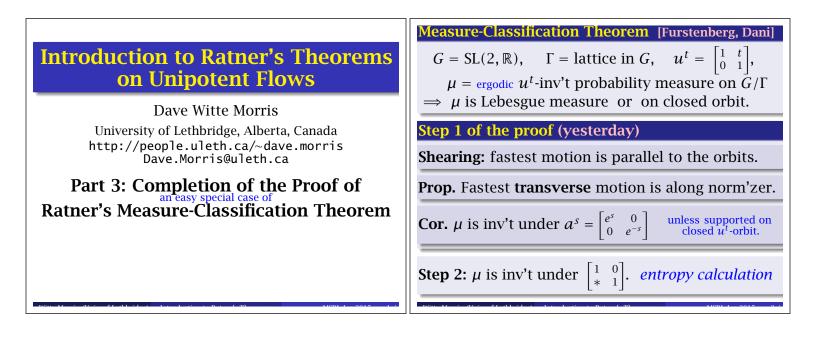
Observation

$$a^{s}\begin{bmatrix}1&*\\0&1\end{bmatrix}a^{-s}=\begin{bmatrix}1&*\\0&1\end{bmatrix}:$$
 a^{s} normalizes $\{u^{t}\}.$

Proposition

For action of a unipotent subgroup, the fastest transverse divergence is along the normalizer.

Prop. Fastest transverse div is along normalizer .		
Corollary (Step 1 of Ratner's Proof)		
μ is u^t -inv't and ergodic (and) $\Rightarrow \mu$ is a^s -inv't.		
Proof.		
$a^{s} \text{ normalizes } u^{t} \Rightarrow u^{t}(a^{s}\mu) = a^{s}(u^{t'}\mu) = a^{s}\mu.$ $\mu \text{ and } a^{s}\mu \text{ are two } different \text{ ergodic measures}$ $\Rightarrow \text{ live on disjoint } u^{t}\text{-invariant sets } C \text{ and } a^{s}C.$ Assume $d(C, a^{s}C) > \epsilon.$ For $x \approx \gamma$ in C : $C \ni u^{t}x \approx a^{s}u^{t'}\gamma \in a^{s}C$ ($\exists t, t'$). $\Rightarrow d(C, a^{s}C) < \epsilon. \rightarrow \leftarrow \qquad \square$		
Step 2: entropy calculation $\Rightarrow \mu$ inv't under $\begin{bmatrix} 1 \\ * & 1 \end{bmatrix}$.		



Step 2: Entropy calculation	$h_{\mu}(T) := \lim_{n \to \infty} h_{\mu}(\mathcal{P}_n)/n \ge 0$
What is entropy? Fix partition $\mathcal{P} = \{A_1, \dots, A_n\}$ of X . Let $p_i = \mu(A_i)$. Suppose x is an <u>unknown</u> point in X . Learning $x \in A_i$ gives us information: # bits of info is $ \log(\mu(A_i)) = \log p_i $.	Eg. $T(x) = x + \alpha \pmod{1}$ (with α irrational). $[0,1) = [0,1/2) \cup [1/2,1)$ $\Rightarrow \#\mathcal{P}_n \le 2 + \#\mathcal{P}_{n-1} \le n$ $\Rightarrow h_{leb}(\mathcal{P}_n) \le \log 2n$ $h_{leb}(T) \le \lim_{n \to \infty} \frac{1}{n} \log 2n = 0.$
Expected # bits info is $\sum_i p_i \log p_i $ = the entropy of \mathcal{P} = $h_{\mu}(\mathcal{P}) \ge 0$.	More generally:
	Prop. $T \in \text{Isom}(X) \implies h_{\mu}(T) = 0.$
For $T: X \to X$, entropy $h_{\mu}(T)$	
= growth rate from x, Tx, T^2x, \dots, T^nx .	no distances are stretched \implies entropy is 0
$\mathcal{P}_n = \{A_i\} \lor \{T^{-1}A_i\} \lor \cdots \lor \{T^{-n}A_i\}$	
$h_{\mu}(T) := \lim_{n \to \infty} h_{\mu}(\mathcal{P}_n) / n.$ (usually independent of \mathcal{P})	amount of stretching = entropy for diffeos

amount of stretching = entropy for diffeos	Theorem (Ledrappier-Yo
	• $T = meas$ -pres diffed
Pesin Entropy Formula [1977]	• tangent bundle $\mathcal{T}M$
• $T = vol$ -pres diffeo of manifold M (cpct, smooth)	$\forall \boldsymbol{\xi} \in \boldsymbol{\mathcal{E}}_{i}, \ \boldsymbol{T}(\boldsymbol{\xi}) \ $
• tangent bundle $\mathcal{T}M = \mathcal{E}_1 \oplus \cdots \oplus \mathcal{E}_n$ (<i>T-inv't</i>),	• <i>H</i> -orbits are tangent
$\forall \xi \in \mathcal{I}_i, \ T(\xi)\ = \tau_i \ \xi\ .$	• $\eta = \sum_{\tau_i > 1} (\dim \mathcal{E}_i)$ lo
Then $h_{\text{vol}}(T) = \sum_{\tau_i > 1} (\dim \mathcal{E}_i) \log \tau_i.$	Then $h_{\mu}(T) \leq \eta$. Equa
	<i>"measure of max</i>
Example (entropy of geodesic flow)	Idea. If supp μ misses di
$\beta = \beta = \left[\alpha \beta e^{2s} \right]$	they do not contribu
Recall $a^{s}qa^{-s} = \begin{vmatrix} \alpha & \beta e^{2s} \\ \gamma e^{-2s} & \delta \end{vmatrix}$. $h_{\text{vol}}(a^{s}) = 2 s $	2
	To exploit all directions (
$\mathcal{T}M = egin{bmatrix} 0 & * \ 0 & 0 \end{bmatrix} \oplus egin{bmatrix} * & 0 \ 0 & * \end{bmatrix} \oplus egin{bmatrix} 0 & 0 \ * & 0 \end{bmatrix}$	μ must be Lebesgue
	So μ is <i>H</i> -invariant.

oung [1985])

- o of manifold M
- $= \mathcal{I}_1 \oplus \cdots \oplus \mathcal{I}_n$ (*T-inv't*), $\| = \tau_i \| \xi \|.$
- It to $\bigoplus_{\tau_i > 1} \mathcal{E}_i$
- $\log \tau_i$

Then
$$h_{\mu}(T) \leq \eta$$
. Equality $\Leftrightarrow \mu$ is *H*-inv't

ximal entropy is nice"

irections that are stretched, ute as much as they should. (along the *H*-orbits), on every *H*-orbit.

Theorem (Ledrappier-Young [1985])	Measure-classification ⇒ Equidistribution
If <i>H</i> -orbits tangent to the expanding directions of <i>T</i> , then $h_{\mu}(T) \leq \eta = \text{total stretching.}$	Show $M_T(f) := \frac{1}{T} \int_0^T f(u^t x) dt \to \int_{Sx} f d \text{ vol } \exists S$
<i>Equality</i> $\Leftrightarrow \mu$ <i>is H</i> - <i>inv't</i> .	Measure-Classification.
Cor. Suppose μ is a^s -inv't on SL(2, \mathbb{R})/ Γ .	• Each ergodic measure is vol _{<i>Sy</i>} .
Then $h_{\mu}(a^s) \le 2 s $, with equality iff μ is u^t -inv't.	• Every inv't meas is $(\approx) \sum_i \operatorname{vol}_{S_i \mathcal{Y}_i}$.
Step 2. μ inv't under u^t and $a^s \implies \mu$ = Lebesgue.	Recall that $M_T \in \text{Meas } X$ and $\text{Meas}(X)$ is compact. Need to show only acc pt M_{∞} of $\{M_T\}$ is some $\text{vol}_{S_{\mathcal{Y}}}$.
Proof.	Key to Proof. Show $M_{\infty}(S\gamma) \neq 0 \Rightarrow \{u^{t}x\} \subseteq S\gamma$.
μ is u^t -inv't $\implies h_{\mu}(a^s) = 2 s \implies h_{\mu}(a^{-s}) = 2 s $	Rey to FIGOL Show $M_{\infty}(3y) \neq 0 \Rightarrow \{u, x\} \subseteq 3y$.
$\Rightarrow \mu$ is invariant under $\begin{vmatrix} 1 & 0 \\ r & 1 \end{vmatrix} = v^r$.	$\therefore \{u^t x\} \subseteq Sx \text{ and } \dim S \text{ minimal} \Rightarrow M_{\infty} = \operatorname{vol}_{Sx}.$
μ is invariant under $\langle u^t, a^s, v^r \rangle = \operatorname{SL}(2, \mathbb{R}).$	Claim. $d(u^t x, Sy)^2$ is polynomial function of <i>t</i> .

Claim. $d(u^t x, Sy)^2$ is polynomial function of <i>t</i> .		
Taylor series: $\log u = \sum_{k=1}^{n} (-1)^{k+1} \frac{1}{k} (u-I)^{k}$ So $u^{t} = \exp(t \log u) = \sum_{k=1}^{n} \frac{1}{k!} t^{k} (\log u)^{k}$.		
Each matrix entry of u^t is polynomial function.		
Linearization (Dani-Margulis [1993])		
Can show $S \doteq \overline{\overline{S}}$, so \exists homo $\rho \colon G \to SL(D, \mathbb{R})$, and $\vec{v} \in \mathbb{R}^D$, such that $S = \operatorname{Stab}_G(\vec{v})$. (Chevalley's Theorem)		
Write $x = g\Gamma$, and assume $y = e\Gamma$. $d(u^t x, Sy)^2 \doteq d(u^t g, S)^2 \doteq d(u^t gv, v)^2$.		
u^t is polynomial func of $t \Rightarrow u^t g v$ is polynomial $\Rightarrow d(u^t g v, v)^2$ is polynomial.		

Key to Proof. Show $M_{\infty}(Sy) \neq 0 \Rightarrow \{u^t x\} \subseteq Sy$. We know $d(u^t x, Sy)^2$ is poly func of t of degree N. $f \in C_c(X)_{\leq 1}$, supported in δ -neigh of Sy, such that $M_T(f) > 0.01$. $0.01 < M_T(f) = \frac{1}{T} \int_0^T f(u^t x) dt$ $\leq \frac{1}{T} \ell(\{t \mid f(u^t x) \neq 0\})$ $\leq \frac{1}{T} \ell(\{t \mid d(u^t x, Sy) < \delta\})$ $d(u^t x, Sy)^2$ is poly that is $< \delta$ on 1% of [0, T] $\Rightarrow d(u^t x, Sy)^2 < \epsilon$ on [0, T]. Let $T_k \to \infty$: $d(u^t x, Sy) = 0$ for all t. So $\{u^t x\} \subseteq Sy$.