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Abstract. Let f be the obvious covering map from Euclidean
n-space to the n-torus. It is well known that if L is any
straight line in n-space, then the closure of f(L) is a very nice
submanifold of the n-torus. In 1990, Marina Ratner proved a
beautiful generalization of this observation that replaces
Euclidean space with any Lie group G, and allows L to be any
subgroup of G that is “unipotent” We will discuss the
statement of this theorem and related results, some of the
ideas in the proofs, and a few of the important consequences.

Elementary example

Let M = torus T? = R?/7?
@ covering map f: R> - M
@ H =line in R2. v
If the slope of H is irrational,

it is classical that f(H) is dense@

Exercise. Let M = n-torus T" = R"/Z"
@ covering map f: R" - M
@ H =vector subspace of R™.
Closure f(H) = f(S) is a torus T* (3 subspace S of R™).

The closure of f(H) is a very nice submanifold of M.

Example in Riemannian geometry

Let M = compact, hyperbolic n-mfld o
@ coveringmap f: H" - M /
@ line H! - H"

Closure f(H!) can be a fractal.

Consequence of Ratner’s Thm [Shah, Payne]
H2 c H* = f(H?)= f(H¥) is a submfld of M
(immersed, maybe not embedded).
(Similar for other locally symmetric spaces.)

e f: R" — R™/Z" e H = vector subspace of R"
= f(H) = f(S), 3 vector subspace S of R™.

@ R™is aLie group (group & manifold)

@ subgroup Z" is a lattice
(discrete and R™/Z™ has finite volume)

Generalization (Ratner’s Theorem) [1991]

Replace:
@ R"™ with any Lie group G
@ 7™ with any lattice ' in G
@ H with any subgroup of G
that is generated by “unipotent” elements
@ S with a closed subgroup of G

Homogeneous Dynamics

study of dynamical systems on homogeneous spaces

finite-volume homogeneous space G/I:

@ G = Lie group = closed subgroup of SL(n, R)
{n X n mats with R entries, det =1}
= group & manifold

0 [ =——closed-subaroup-of—c— lattice in G

Coset space G/I' is a manifold of finite volume.

“dynamical system” = action of subgroup H of G
h:G/T - G/T h(xT') = hxT

E.g., understand the orbit HxT in G/T

Ratner’s Theorem [1991]

@ finite-volume homogeneous space G/T
@ subgroup H gen’d by unipotent elements

= HxI = SxT'" for some closed subgroup S of G.

Also: H< S and (xI'x~1) nSislattin S if H conn.

Unipotent 1

matrices are 1

conjugate to O C SL(n, R).
an element of

Exer. u unip < (u —I1)" = 0 < char poly (x — 1)"
< only eigenvalue is 1 = not diag’ble (unless u = .




Applications of Ratner’s Theorem

Example (Shah [1991], Payne [1999])
M =H"T, f:H"—M, H?cCH"
= f(H?2) is (immersed) sSubmanifold of M.

Idea of proof.
e H" = K\SO(1,n) =K\G =>m:G/T - M
o f(H?) = m(SO(1,2)°xT) = w(HxT)
F(12) = w(HXT) = w(HxT) 2 m(SxT)
= immersed submanifold. [l

H =50(1,2)° = SL2,R) = [5 5] =([§11.[L9D)
is generated by unipotent elements

“Oppenheim Conjecture” (Margulis [1987])

Let Q be areal quadratic form in n > 3 variables
(e.g., x° — \2xy + /32°).

Then Q (Z™) is dense in R
unless = Z-coefficients, or definite, or degenerate.

Proof for n = 3.
Let G = SL(3,R), I'= SL(3,Z), and

H = S0(Q) = {h € SL(3,R) | Q(hX) = Q(X) }.
Ratner: HT = ST, for some subgroup S = H.
Algebra: H is maximal in G, so S = H or G.

S =H = Q has Z-coefficients (»)
So HT is dense in G. Therefore

Q(73) > Q(HIZ3) = Q(GZ®) = Q(R?) =R. [J

Example (Shah [1998])

I', A lattices in G = SL(n,R)  (any simple Lie group)
= every A-orbit on G/T is either finite or dense.

Proof. Ratner: AxT = SxI', and S 2 A.
Borel Density Theorem: A ¢ conn, proper subgrp.
.. A normalizes H connected = Ng(H) = G
= (bcs G simple) H = {e} or G.
S° = {e} = S/Afinite. S° =G => S/A =G/A. O

Gap: Ratner’s Thm requires A to be gen’d by unips.

Exer. Fix by using fact that G is gen’d by unips.
Hint: Look at orbit of {(g,g)} on (G X G)/(T X A).
G simple = {(g,9g)} is max’l conn subgrp.

A Key Idea in the Proof
Vi —_—

G = SL(2,R) = { 2 x 2 real mat’s of det 1 }.
LetI' = SL(2,7). Then T is a lattice in G.

Other choices of I' can make G /I' compact. 7

1t ;_|et 0
01 anda—Oe,t.

Each is a homomorphism from R to SL(2, R).
u! is a unipotent one-parameter subgroup.

Define u! =

Po—— ——tigx
X.\—/\.—’\

1t
w=o 1]
d(x,qx) = lqll.

b |la+yt B+ (65— )t —yt?
uqu —[ y 5—yt

d(utx,utqx) = llutqu-t|.

Shearing: Fastest motion is parallel to the orbits.
Yt
® )

®
Xt

Cor. If x = y, then 3t, y; = X¢41.

Fastest motion is parallel to the orbits.

Y Yt
® T *
X Xt

x Pe?t
5 t -t _
Contrast: atqa™" = [ye‘” 5 ]
Fastest motion is transverse to the orbits.

b%




Further reading (and references to primary sources)

chapter of forthcoming book on arithmetic grps
free PDF file on my web page (or the arxiv)
http://people.uleth.ca/~dave.morris
/books/IntroArithGroups.html

my book: Ratner’s Theorems on Unipotent Flows
free PDF file on my web page (or the arxiv)
http://people.uleth.ca/~dave.morris
/books/Ratner.html
published by University of Chicago Press (2005)
% available from Amazon s * %
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Part 2: Variations of Ratner’s Theorem
and Additional Ideas of the Proof

Ratner’s Theorem [1991]

@ G =Lie group = closed subgroup of SL(n,R)
o I =latticein G = discrete subgroup
@ X =G/T with vol(G/T) < o0 - -
@ H = subgroup of G gen’d by unips < 0 ]
1
Suffices to assume Zariski closure I gen’d by unips
~ smallest aimost conn subgrp of G that > H.

= Hx = Sx for some subgroup S of G.

Conjecture (Shah [1998])

Progress by Benoist-Quint [2013]

True if H = SL(TL, R) (or semisimple) and H/H" is finitely gen’d

Ratner’s Theorem
@ G =Lie group = closed subgroup of SL(n, R)
@ [ =latticein G = discrete subgroup
1 %
0 1]

e X=G/T with vol(G/T) < oo
@ H = subgroup of G gen’d by unips <
Derived from special case where H = {u!} is 1-dim’l

= Hx = Sx for some subgroup S of G.

Ratner’s Theorem

{u'} unipotent = {ut}x = Sx, 3 subgrp S of G.

Also: S 2 {u'} and Sx has finite S-inv’t volume.

Let X = torus T2 = R2/Z2. /
Any v € R? defines a flow on T?:

xXr=x+tv =ulx
If the slope of v is irrational, /

it is classical that every orbit is dense (& unif dist).
Also: Lebesgue is the only inv’t probability measure.

v = (a, b, 0) defines a flow on T3 = R3/73
and T2 x {0} is invariant.
Lebesgue on T2 x {0} is an invariant measure.

Vv, any ergodic inv’t probability meas for flow on T3 is
Lebesgue meas on some subtorus T (0 < k < 3).

Ratner’s Theorem on Orbit Closures
3 subgrp S of G.
Ratner’s Equidistribution Theorem
{utlx isT-de-ns-e- equidistributed in Sx:

%L f(utx) dt — fodvol for f € C.(G/T)
where vol = S-invariant volume form on Sx.

Ratner’s Measure-Classification Theorem

Any ergodic u‘-invariant probability measure on G/T
is S-invariant volume form on some Sx.

{u'} unipotent = {ut}x = Sx,

Generalized to p-adic groups. ; characteristic p ?
[Ratner, Margulis-Tomanov]| [Einsiedler, Ghosh, Mohammadi]

measure-classification = equidist = orbit-closure

measure-classification = equidistribution
T
lj futx)dt — J fdvol
T Jo Sx

Easy case

u = unique ut-inv’t probability meas on X (compact)
= every ul-orbit is equidistributed.

Proof. M7 (f) := %fon(utx) dt

Mr: C.(X) - C positive linear functional
Riesz Rep Thm: Mt € Meas(X) = {prob meas on X}.
Banach-Alaoglu: Meas(X) weak* compact

= subsequence My, — M. ul-invariant.

Therefore Mo, = u.  So M7(f) — u(f) = [ fdu. [




Example: G = SL(2,R)

SL(2,R)/I' compact = the only invariant probability
1t
01
Corollary

Every ut-orbit is equidistributed (.. dense).

Theorem (Dani [1978])

SL(2,R) /T noncompact = other ergodic ut-invariant
measure is the measure supported on a closed orbit.

T, >

measure for ut = [ ] is the ordinary volume.

Theorem (Dani [1978])

SL(2,R) /T noncompact = other ergodic ut-invariant
measure is the measure supported on a closed orbit.

Every invariant measure is a
combination of ergodic measures.
Every ut-inv’t probability
meas on SL(2,R) /T is a
combination of Lebesgue

measure with measures on
cylinders of closed orbits.

Ratner’s Measure-Classification Theorem

Ergodic u!-inv’t prob meas is S-inv’t vol on Sx @3s, x)

Sxo has finite S-inv’t volume
< gSxo has finite gSg~'-inv’t volume.
If ut < gSg=!, this provides a u'-invariant measure.
e gSxo is analogue of a closed orbit.

Fix xo.

Nwut,S):={geG|ut < gSg~'} (~submanifold).
N(ut,S)xo < G/T ~ cylinder of closed orbits:
each gSxo has an u'-invariant prob meas.

Lem. 3 only countably many possible subgroups S.

Cor. Every u!-inv’t prob meas on G/T is a combo of
measures on these countably many “tubes”

What does “ergodic” mean?

Defn. p ergodic ul-inv’'t meas:
every ut-inv’'t meas’ble func is constant (a.e.)

Pointwise Ergodic Theorem

u ergodic < a.e. ut-orbit is p-equidistributed.
T
lj futx)dt — J fdu a.e.
T Jo X

Exer. u; + u», both ergodic
= u; and p» are mutually singular.
ui(C) =1, () =1, C(inC =0

Hint. py = fl2 + Using and  f is ut-inv't.

Proof of Measure-Classification

1t e’ 0
_ t _ _
G = SL(2,R), u'= [O 1], a’ = [O e‘s]

x‘»/\o——\
b |a+yt B+ (65— )t —yt?
uqu —[ y 5yt

Shearing: Fastest motion is parallel to the orbits.

y Yt
@ "4 &
X Xt

Shearing

Fastest motion is parallel to the orbits.
y Yt
C ° ®
X Xt

% EeZs
. S —-S _
Contrast: a‘qa° = [ye‘zs 5

Fastest motion is transverse to the orbits.

Vs
Y
[ \ 4
X X




Fastest motion is parallel to the orbits.

y Yt
[ @ &
X Xt

Key idea in proof of Measure-Classification

Ignore motion along the orbit, and look at the
transverse motion perpendicular to the orbit.

Yio Vi
°

XK

oMt o a+yt B+(6— @)t —yt?
u—[ },uqu —[ y 5yt

Fastest motion is along {u!}.
Ignoring this, largest terms are diagonal (in {a*})

as [1 *} a5 — [1 *}; a® normalizes {ut}-

01 01

Proposition

For action of a unipotent subgroup, the fastest
transverse divergence is along the normalizer.

Prop. Fastest transverse div is along normalizer.

Corollary (Step 1 of Ratner’s Proof)

u is ut-inv’t and ergodic (and...) = p isa*-inv't.

a® normalizes u! = u'(a‘y) = a*(ut'y) = a’p.
u and a’u are two different ergodic measures
= live on disjoint u!-invariant sets C and a*C.
Assume d(C,a’C) > €.
Forx = yinC: C>3ulx=au'yea’C auu).
> d(C,a*C) <e. —« ]

Step 2: entropy calculation = p inv’t under [}k 1}.
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Part 3: Completion of the Proof of

an easy SiEClal case of

Ratner’s Measure-Classification Theorem

Measure-Classification Theorem [Furstenberg, Dani]
G=SL2R), I=lticeinG, u'= |} |
U = ergodic ut-inv’t probability measure on G /T’
= u is Lebesgue measure or on closed orbit.

Step 1 of the proof (yesterday)

Shearing: fastest motion is parallel to the orbits.

Prop. Fastest transverse motion is along norm’zer.

unless supported on

s ] s _ e’ 0
Cor. p is inv’'t under a‘ = [0 e_s] closed 1t-orbit.

1 0

Step 2: u is inv’t under [ . 1]. entropy calculation

Step 2: Entropy calculation

What is entropy?
Fix partition P = {A,,...,A,} of X. Let p;
Suppose x is an unknown point in X.
Learning x € A; gives us information:

# bits of info is |log(u(A;))| = llog p;l.

>.i pillogpil
=h,(P)

1.
Il
&

H(A;).

Expected # bits info is

= the entropy of P > 0.

For T: X — X, entropy h,(T)
= growth rate from x, Tx, T?x,
Pn={A} VT 1A}V -+

hy(T) := limy . hy(Py) /n.

L TMx.
v { T_"Ai}
(usually independent of P)

Eg. T(x) = x + ¢ (mod 1) (with « irrational).
[0,1) =[0,1/2)u[1/2,1)

> H#Py <2+#Pn 1 <n

= hep(Py) < log2n
Niep(T) < limy—.o = log2n = 0.

More generally:

Prop. T € Isom(X) = h,(T) =0

no distances are stretched = entropy is 0

amount of stretching = entropy for diffeos

amount of stretching = entropy for diffeos

Pesin Entropy Formula [1977]

@ T = vol-pres diffeo of manifold M (cpct, smooth)
@ tangent bundle TM = F, &
VEE L, ITE)I = Til&ll.

Then hy(T) = >.51 (dimZE;) log Ti.

Example (entropy of geodesic flow)

P e2s
ye2s B(S ] hyo(a®) = 2|s]|

il LRI ERIR Y]

-0 E, (T-invh,

Recall a’qa— = [

Theorem (Ledrappier-Young [1985])

@ T = meas-pres diffeo of manifold M
@ tangent bundle TM = F, &
VEE L, ITE)I = Tilé&ll.
@ H-orbits are tangent to D+,>1 i
@ n=>.-1(dimZ;) logT;
Then h,(T) <n. Equality < pis H-inv’t.

“measure of maximal entropy is nice”

- E, (T-invy),

Idea. If supp p misses directions that are stretched,
they do not contribute as much as they should.
To exploit all directions (along the H-orbits),
u must be Lebesgue on every H-orbit.
So u is H-invariant.




Theorem (Ledrappier-Young [1985])

If H-orbits tangent to the expanding directions of T,
then h,(T) < n = total stretching.
Equality < u is H-inv't.

Cor. Suppose pu is a*-inv’'t on SL(2,R)/T.
Then h,(a®) < 2|s|, with equality iff p is ut-inv't.

Measure-classification = Equidistribution

Show Mr(f) = % [, f(ulx)dt — [s fdvol 3S

Measure-Classification.
@ Each ergodic measure is volg,,.
@ Every inv't meas is (») >; vols,,,.

Step 2. p inv’'t under u! and a* = u = Lebesgue.

pis ut-inv't = hy(a’) =2Is| = hy(a™*) = 2|s|

=> u is invariant under [i (1)] = p¥.

u is invariant under (u!, a*,v") = SL(2,R). OJ

Recall that My € Meas X and Meas(X) is compact.
Need to show only acc pt M., of {M7} is some vols,,.

Key to Proof. Show M, (Sy) # 0 = {ufx} c Sy.

S {ulx} € Sx and dim S minimal = M, = volgy.

Claim. d(u'x, Sy)? is polynomial function of t.

Claim. d(u'x,Sy)? is polynomial function of t.

Taylor series: logu = Z}f:l(—l)k“%(u — 1)k
So ul = exp(tlogu) = >, % tk log u)k.
Each matrix entry of u! is polynomial function.

Linearization (Dani-Margulis [1993])

Can show S = S, so
3 homo p: G — SL(D,R), and v € RP,
such that S = Stabg (V).
Write x = gI', and assume y = el
d(utx,Sy)? =d(utg,S)? = dutgv,v)?.
u' is polynomial func of t = ulgv is polynomial
= d(utgv,v)? is polynomial.

(Chevalley’s Theorem)

Key to Proof. Show M, (Sy) # 0 = {ulx} c Sy.

We know d(ufx,Sy)? is poly func of t of degree N.

f € C.(X) <1, supported in 6-neigh of Sy,
such that M7 (f) > 0.01.
0.01 < Mr(f) = + Jy f(utx)dt
<1 0({t| flutx)#0})
<10({t|dux,Sy) <5})
d(utx,Sy)? is poly thatis < § on 1% of [0, T]
= d(utx,Sy)2 <eon[0,T].
Let Ty — oo:  d(ulx,Sy) =0 forall t.
So {ulx} c Sy. O
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