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Abstract. Let f be the obvious covering map from Euclidean
n-space to the n-torus. It is well known that if L is any
straight line in n-space, then the closure of f(L) is a very nice
submanifold of the n-torus. In 1990, Marina Ratner proved a
beautiful generalization of this observation that replaces
Euclidean space with any Lie group G, and allows L to be any
subgroup of G that is “unipotent.” We will discuss the
statement of this theorem and related results, some of the
ideas in the proofs, and a few of the important consequences.
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Elementary example

Let M = torus T2 = R2/Z2

covering map f : R2 → M
H = line in R2. ↓

If the slope of H is irrational,
it is classical that f(H) is dense.

Exercise. Let M = n-torus Tn = Rn/Zn
covering map f : Rn → M
H = vector subspace of Rn.

Closure f(H) = f(S) is a torus Tk (∃ subspace S of Rn).

The closure of f(H) is a very nice submanifold of M .
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Example in Riemannian geometry

Example
Let M = compact, hyperbolic n-mfld

covering map f : Hn → M
line H1 ↩ Hn ↓

Closure f(H1) can be a fractal.

Consequence of Ratner’s Thm [Shah, Payne]

H2 ⊂ Hn "⇒ f(H2) = f(Hk) is a submfld of M
(immersed, maybe not embedded).

(Similar for other locally symmetric spaces.)
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Recall
• f : Rn → Rn/Zn • H = vector subspace of Rn

"⇒ f(H) = f(S), ∃ vector subspace S of Rn.

Rn is a Lie group (group & manifold)
subgroup Zn is a lattice

(discrete and Rn/Zn has finite volume)

Generalization (Ratner’s Theorem) [1991]

Replace:
Rn with any Lie group G
Zn with any lattice Γ in G
H with any subgroup of G

that is generated by “unipotent” elements
S with a closed subgroup of G
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Homogeneous Dynamics

study of dynamical systems on homogeneous spaces

finite-volume homogeneous space G/Γ :
G = Lie group = closed subgroup of SL(n,R)

{n×n mats with R entries, det = 1 }
= group & manifold

Γ = closed subgroup of G lattice in G
Coset space G/Γ is a manifold of finite volume.

“dynamical system” = action of subgroup H of G
h : G/Γ → G/Γ h(xΓ) = hxΓ

E.g., understand the orbit HxΓ in G/Γ
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Ratner’s Theorem [1991]

finite-volume homogeneous space G/Γ
subgroup H gen’d by unipotent elements

⇒ HxΓ = SxΓ for some closed subgroup S of G.

Also: H ⊆ S and (xΓx−1)∩ S is latt in S if H conn.

Unipotent
matrices are
conjugate to
an element of

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1
1 ∗

0 ...
1

⎤
⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
⊂ SL(n,R).

Exer. u unip # (u− I)n = 0 # char poly (x − 1)n
# only eigenvalue is 1 ⇒ not diag’ble (unless u = I).
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Applications of Ratner’s Theorem

Example (Shah [1991], Payne [1999])

M = Hn/Γ , f : Hn → M , H2 ⊂ Hn
"⇒ f(H2) is (immersed) submanifold of M .

Idea of proof.
• Hn = K\SO(1, n)◦ = K\G ⇒ π : G/Γ → M
• f(H2) = π

(
SO(1,2)◦xΓ

)
= π(HxΓ)

f (H2) = π(HxΓ) = π
(
HxΓ

) Ratner= π(SxΓ)
= immersed submanifold.

H = SO(1,2)◦ - SL(2,R) =
[∗ ∗
∗ ∗
]
=
〈[ 1 ∗

0 1
]
,
[ 1 0
∗ 1

]〉

is generated by unipotent elements
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“Oppenheim Conjecture” (Margulis [1987])
Let Q be a real quadratic form in n ≥ 3 variables

(e.g., x2 −
√

2xy +
√

3z2).
Then Q(Zn) is dense in R

unless ≈ Z-coefficients, or definite, or degenerate.

Proof for nnn=== 333.
Let G = SL(3,R), Γ = SL(3,Z), and

H = SO(Q) = {h ∈ SL(3,R) | Q(hx⃗) = Q(x⃗) }.
Ratner: HΓ = SΓ , for some subgroup S ⊇ H.
Algebra: H is maximal in G, so S = H or G.

S = H "⇒ Q has Z-coefficients (≈)

So HΓ is dense in G. Therefore
Q(Z3) ⊃ Q

(
HΓZ3

)
= Q(GZ3) = Q(R3) = R.
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Example (Shah [1998])
Γ , Λ lattices in G = SL(n,R) (any simple Lie group)

⇒ every Λ-orbit on G/Γ is either finite or dense.

Proof. Ratner: ΛxΓ = SxΓ , and S ⊇ Λ.
Borel Density Theorem: Λ ̸⊂ conn, proper subgrp.

∴ Λ normalizes H connected ⇒ NG(H) = G
⇒ (bcs G simple) H = {e} or G.

S◦ = {e} ⇒ S/Λ finite. S◦ = G ⇒ S/Λ = G/Λ.

Gap: Ratner’s Thm requires Λ to be gen’d by unips.

Exer. Fix by using fact that G is gen’d by unips.
Hint: Look at orbit of {(g, g)} on (G ×G)/(Γ ×Λ).

G simple ⇒ {(g, g)} is max’l conn subgrp.
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A Key Idea in the Proof

Example
G = SL(2,R) = { 2× 2 real mat’s of det 1 }.
Let Γ = SL(2,Z). Then Γ is a lattice in G.

Other choices of Γ can make G/Γ compact.

Definition

Define ut =
[

1 t
0 1

]
and at =

[
et 0
0 e−t

]
.

Each is a homomorphism from R to SL(2,R).
ut is a unipotent one-parameter subgroup.
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ut =
[

1 t
0 1

]

x u xt u qxtqx

d(x, qx) = ∥q∥. d(utx,utqx) = ∥utqu−t∥.

utqu−t =
[
α+ γt β+ (δ−α)t − γt2

γ δ− γt

]

Shearing: Fastest motion is parallel to the orbits.

x

t

y

t

Cor. If x ≈ y , then ∃t, yt ≈ xt+1.
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Shearing
Fastest motion is parallel to the orbits.

x

y

x

t

y

t

Contrast: atqa−t =
[

α βe2t

γe−2t δ

]

Fastest motion is transverse to the orbits.

x

y

x

t

y

t
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Further reading (and references to primary sources)

chapter of forthcoming book on arithmetic grps
free PDF file on my web page (or the arxiv)

http://people.uleth.ca/∼dave.morris
/books/IntroArithGroups.html

my book: Ratner’s Theorems on Unipotent Flows
free PDF file on my web page (or the arxiv)

http://people.uleth.ca/∼dave.morris
/books/Ratner.html

published by University of Chicago Press (2005)
∗∗∗ available from Amazon ∗∗∗
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Part 2: Variations of Ratner’s Theorem
and Additional Ideas of the Proof
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Ratner’s Theorem [1991]

G = Lie group = closed subgroup of SL(n,R)
Γ = lattice in G = discrete subgroup

with vol(G/Γ) <∞X = G/Γ
H = subgroup of G gen’d by unips ⊆

⎡
⎢⎢⎣

1 ∗
0

.. .
1

⎤
⎥⎥⎦

⇒ Hx = Sx for some subgroup S of G.

Conjecture (Shah [1998])

Suffices to assume Zariski closure H gen’d by unips
≈ smallest almost conn subgrp of G that ⊇ H.

Progress by Benoist-Quint [2013]

True if H = SL(n,R) (or semisimple) and H/H◦ is finitely gen’d
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Ratner’s Theorem
G = Lie group = closed subgroup of SL(n,R)
Γ = lattice in G = discrete subgroup

with vol(G/Γ) <∞X = G/Γ
H = subgroup of G gen’d by unips ⊆

⎡
⎢⎢⎣

1 ∗
0

.. .
1

⎤
⎥⎥⎦

⇒ Hx = Sx for some subgroup S of G.

Derived from special case where H = {ut} is 1-dim’l

Ratner’s Theorem

{ut} unipotent ⇒ {ut}x = Sx, ∃ subgrp S of G.

Also: S ⊇ {ut} and Sx has finite S-inv’t volume.
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Example
Let X = torus T2 = R2/Z2.
Any v ∈ R2 defines a flow on T2:

xt = x + tv + utx
If the slope of v is irrational,
it is classical that every orbit is dense (& unif dist).
Also: Lebesgue is the only inv’t probability measure.

v = (a, b,0) defines a flow on T3 = R3/Z3

and T2 × {0} is invariant.
Lebesgue on T2 × {0} is an invariant measure.

∀v , any ergodic inv’t probability meas for flow on T3 is
Lebesgue meas on some subtorus Tk (0 ≤ k ≤ 3).
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Ratner’s Theorem on Orbit Closures

{ut} unipotent ⇒ {ut}x = Sx, ∃ subgrp S of G.

Ratner’s Equidistribution Theorem

{ut}x is dense equidistributed in Sx:

for f ∈ Cc(G/Γ)
1
T

∫ T

0
f(utx)dt →

∫

Sx
f d vol

where vol = S-invariant volume form on Sx.

Ratner’s Measure-Classification Theorem
Any ergodic ut-invariant probability measure on G/Γ
is S-invariant volume form on some Sx.

Generalized to p-adic groups.
[Ratner, Margulis-Tomanov]

¿ characteristic p ?
[Einsiedler, Ghosh, Mohammadi]

measure-classification ⇒ equidist ⇒ orbit-closure
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measure-classification ⇒ equidistribution
1
T

∫ T

0
f(utx)dt →

∫

Sx
f d vol

Easy case

µ = unique ut-inv’t probability meas on X (compact)

⇒ every ut-orbit is equidistributed.

Proof. MT(f) := 1
T
∫ T
0 f(utx)dt

MT : Cc(X)→ C positive linear functional

Riesz Rep Thm: MT ∈ Meas(X) = {prob meas on X}.
Banach-Alaoglu: Meas(X) weak∗ compact

⇒ subsequence MTn → M∞ ut-invariant.

Therefore M∞ = µ. So MT(f)→ µ(f) =
∫
f dµ.
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Example: G = SL(2,R)
Theorem (Furstenberg [1973])
SL(2,R)/Γ compact ⇒ the only invariant probability

measure for ut =
[

1 t
0 1

]
is the ordinary volume.

Corollary

Every ut-orbit is equidistributed (∴ dense).

Theorem (Dani [1978])
SL(2,R)/Γ noncompact ⇒ other ergodic ut-invariant
measure is the measure supported on a closed orbit.
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Theorem (Dani [1978])
SL(2,R)/Γ noncompact ⇒ other ergodic ut-invariant
measure is the measure supported on a closed orbit.

General fact
Every invariant measure is a
combination of ergodic measures.

Corollary

Every ut-inv’t probability
meas on SL(2,R)/Γ is a
combination of Lebesgue
measure with measures on
cylinders of closed orbits.
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Ratner’s Measure-Classification Theorem
Ergodic ut-inv’t prob meas is S-inv’t vol on Sx (∃S,x)

Fix x0. Sx0 has finite S-inv’t volume
! gSx0 has finite gSg−1-inv’t volume.

If ut ⊆ gSg−1, this provides a ut-invariant measure.
• gSx0 is analogue of a closed orbit.

N(ut, S) := {g ∈ G | ut ⊆ gSg−1} (∼submanifold).
N(ut, S)x0 ⊆ G/Γ ∼ cylinder of closed orbits:

each gSx0 has an ut-invariant prob meas.

Lem. ∃ only countably many possible subgroups S.

Cor. Every ut-inv’t prob meas on G/Γ is a combo of
measures on these countably many “tubes.”
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What does “ergodic” mean?

Defn. µ ergodic ut-inv’t meas:
every ut-inv’t meas’ble func is constant (a.e.)

Pointwise Ergodic Theorem

µ ergodic ! a.e. ut-orbit is µ-equidistributed.
1
T

∫ T

0
f(utx)dt →

∫

X
f dµ a.e.

Exer. µ1 ≠ µ2, both ergodic
⇒ µ1 and µ2 are mutually singular.

µ1(C1) = 1, µ2(C2) = 1, C1 ∩ C2 =∅

Hint. µ1 = fµ2 + µsing and f is ut-inv’t.
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Proof of Measure-Classification

G = SL(2,R), ut =
[

1 t
0 1

]
, as =

[
es 0
0 e−s

]
.

x u xt u qxtqx

utqu−t =
[
α+ γt β+ (δ−α)t − γt2

γ δ− γt

]

Shearing: Fastest motion is parallel to the orbits.

x

y

x

t

y

t
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Shearing
Fastest motion is parallel to the orbits.

x

y

x

t

y

t

Contrast: asqa−s =
[

α βe2s

γe−2s δ

]

Fastest motion is transverse to the orbits.

x
y

xs

ys
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Shearing
Fastest motion is parallel to the orbits.

x

y

x

t

y

t

Key idea in proof of Measure-Classification
Ignore motion along the orbit, and look at the
transverse motion perpendicular to the orbit.

x

y

x

t

y

t

0
y

t

x

T

y

T

0
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Example

ut =
[

1 t
0 1

]
, utqu−t =

[
α+ γt β+ (δ−α)t − γt2

γ δ− γt

]

Fastest motion is along {ut}.
Ignoring this, largest terms are diagonal (in {as})

Observation

as
[

1 ∗
0 1

]
a−s =

[
1 ∗
0 1

]
: as normalizes {ut}.

Proposition
For action of a unipotent subgroup, the fastest
transverse divergence is along the normalizer.
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Prop. Fastest transverse div is along normalizer.

Corollary (Step 1 of Ratner’s Proof)

µ is ut-inv’t and ergodic (and . . . ) ⇒ µ is as-inv’t.

Proof.
as normalizes ut ⇒ ut(asµ) = as(ut′µ) = asµ.
µ and asµ are two different ergodic measures

⇒ live on disjoint ut-invariant sets C and asC .
Assume d(C,asC) > ϵ.
For x ≈ y in C : C ∋ utx ≈ asut′y ∈ asC (∃t, t′).

⇒ d(C,asC) < ϵ. →←

Step 2: entropy calculation ⇒ µ inv’t under
[

1
∗ 1

]
.
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Part 3: Completion of the Proof of
an easy special case of

Ratner’s Measure-Classification Theorem
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Measure-Classification Theorem [Furstenberg, Dani]

G = SL(2,R), Γ = lattice in G, ut =
[

1 t
0 1

]
,

µ = ergodic ut-inv’t probability measure on G/Γ
!⇒ µ is Lebesgue measure or on closed orbit.

Step 1 of the proof (yesterday)

Shearing: fastest motion is parallel to the orbits.

Prop. Fastest transverse motion is along norm’zer.

Cor. µ is inv’t under as =
[
es 0
0 e−s

]
unless supported on

closed ut-orbit.

Step 2: µ is inv’t under
[

1 0
∗ 1

]
. entropy calculation
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Step 2: Entropy calculation

What is entropy?
Fix partition P = {A1, . . . , An} of X. Let pi = µ(Ai).
Suppose x is an unknown point in X.
Learning x ∈ Ai gives us information:

# bits of info is
∣∣log

(
µ(Ai)

)∣∣ = |logpi|.
Expected # bits info is

∑
i pi |logpi|

= the entropy of P = hµ(P) ≥ 0.

For T : X → X, entropy hµ(T)
= growth rate from x,Tx, T 2x, . . . , Tnx.

Pn = {Ai}∨ {T−1Ai}∨ · · · ∨ {T−nAi}
hµ(T) := limn→∞hµ(Pn)/n. (usually independent of P)
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hµ(T) := limn→∞hµ(Pn)/n ≥ 0

Eg. T(x) = x +α (mod 1) (with α irrational).
[0,1) = [0,1/2)∪ [1/2,1)

⇒ #Pn ≤ 2+ #Pn−1 ≤ n
⇒ hleb(Pn) ≤ log 2n

hleb(T) ≤ limn→∞
1
n log 2n = 0.

More generally:

Prop. T ∈ Isom(X) !⇒ hµ(T) = 0.

no distances are stretched !⇒ entropy is 0

amount of stretching = entropy for diffeos
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amount of stretching = entropy for diffeos

Pesin Entropy Formula [1977]

T = vol-pres diffeo of manifold M (cpct, smooth)

tangent bundle TM = E1 ⊕ · · ·⊕En (T -inv’t),
∀ξ ∈ Ei, ∥T(ξ)∥ = τi ∥ξ∥.

Then hvol(T) =
∑
τi>1 (dimEi) logτi.

Example (entropy of geodesic flow)

Recall asqa−s =
[

α βe2s

γe−2s δ

]
. hvol(as) = 2|s|

TM =
[

0 ∗
0 0

]
⊕
[
∗ 0
0 ∗

]
⊕
[

0 0
∗ 0

]

Dave Witte Morris (Univ. of Lethbridge) Introduction to Ratner’s Theorems MSRI, Jan 2015 5 / 10

Theorem (Ledrappier-Young [1985])
T = meas-pres diffeo of manifold M
tangent bundle TM = E1 ⊕ · · ·⊕En (T -inv’t),

∀ξ ∈ Ei, ∥T(ξ)∥ = τi ∥ξ∥.
H-orbits are tangent to

⊕
τi>1Ei

η =
∑
τi>1(dimEi) logτi

Then hµ(T) ≤ η. Equality " µ is H-inv’t.

“measure of maximal entropy is nice”

Idea. If suppµ misses directions that are stretched,
they do not contribute as much as they should.

To exploit all directions (along the H-orbits),
µ must be Lebesgue on every H-orbit.

So µ is H-invariant.
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Theorem (Ledrappier-Young [1985])
If H-orbits tangent to the expanding directions of T ,
then hµ(T) ≤ η = total stretching.

Equality " µ is H-inv’t.

Cor. Suppose µ is as-inv’t on SL(2,R)/Γ .
Then hµ(as) ≤ 2|s|, with equality iff µ is ut-inv’t.

Step 2. µ inv’t under ut and as !⇒ µ = Lebesgue.

Proof.
µ is ut-inv’t !⇒ hµ(as) = 2|s| !⇒ hµ(a−s) = 2|s|

!⇒ µ is invariant under
[

1 0
r 1

]
= vr .

µ is invariant under ⟨ut,as, vr⟩ = SL(2,R).
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Measure-classification⇒⇒⇒ Equidistribution

Show MT(f) := 1
T
∫ T
0 f(utx)dt →

∫
Sx f d vol ∃S

Measure-Classification.
Each ergodic measure is volSy .
Every inv’t meas is (≈)

∑
i volSiyi.

Recall that MT ∈ MeasX and Meas(X) is compact.
Need to show only acc pt M∞ of {MT} is some volSy .

Key to Proof. Show M∞(Sy) ≠ 0 ⇒ {utx} ⊆ Sy .

∴ {utx} ⊆ Sx and dimS minimal ⇒ M∞ = volSx.

Claim. d(utx, Sy)2 is polynomial function of t.
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Claim. d(utx, Sy)2 is polynomial function of t.

Taylor series: logu =
∑n
k=1(−1)k+1 1

k(u− I)k
So ut = exp(t logu) =

∑n
k=1

1
k! t

k (logu)k.
Each matrix entry of ut is polynomial function.

Linearization (Dani-Margulis [1993])

Can show S 5 S, so
∃ homo ρ : G → SL(D,R), and v⃗ ∈ RD,

such that S = StabG(v⃗). (Chevalley’s Theorem)

Write x = gΓ , and assume y = eΓ .
d(utx, Sy)2 5 d(utg, S)2 5 d(utgv,v)2.

ut is polynomial func of t ⇒ utgv is polynomial
⇒ d(utgv,v)2 is polynomial.
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Key to Proof. Show M∞(Sy) ≠ 0⇒ {utx} ⊆ Sy .

We know d(utx, Sy)2 is poly func of t of degree N.

f ∈ Cc(X)≤1, supported in δ-neigh of Sy ,
such that MT(f) > 0.01.

0.01 < MT(f) = 1
T
∫ T
0 f(utx)dt

≤ 1
T ℓ
(
{ t | f(utx) ≠ 0 }

)

≤ 1
T ℓ
(
{ t | d(utx, Sy) < δ }

)

d(utx, Sy)2 is poly that is < δ on 1% of [0, T ]
⇒ d(utx, Sy)2 < ϵ on [0, T ].

Let Tk →∞: d(utx, Sy) = 0 for all t.
So {utx} ⊆ Sy .

Dave Witte Morris (Univ. of Lethbridge) Introduction to Ratner’s Theorems MSRI, Jan 2015 10 / 10


	intro-to-Ratners-Thms-MSRI-2-15-Part1.pdf
	intro-to-Ratners-Thms-MSRI-2-15-Part2.pdf
	intro-to-Ratners-Thms-MSRI-2-15-Part3.pdf

