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Suppose Γ is an arithmetic subgroup of a semisimple Lie
group G. For any finite-dimensional representation
ρ : G → GLn(R), a classical paper of J. Tits determines whether
ρ(Γ) is conjugate to a subgroup of GLn(Z). Combining this
with a well-known surjectivity result in Galois cohomology
provides a short proof of the known fact that every G has an
arithmetic subgroup Γ , such that the containment is true for
every representation ρ. We will not assume the audience is
acquainted with Galois cohomology or the theorem of Tits.
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G = simple Lie grp = SLk(R) or SO(k,1)◦
(

conn, linear,
noncompact

)

Γ = arithmetic subgroup
(∼) ∃n, ∃ρ : G .

↩ GLn(R), ρ(Γ) % GLn(Z)∩ ρ(G)
∼" ∃n, ∃ρ : G → GLn(R), ρ(Γ) ⊆ GLn(Z).

Definition
Γ universally arithmetic " ∀n,∀∀∀ρ : G → GLn(R),

∃M ∈ GLn(R), M−1 ρ(Γ)M ⊆ GLn(Z)
(

and Γ is
arithmetic

)
.

Proposition (Morris [2004])
Every G has a universally arithmetic subgroup Γ .

1 My original proof was tedious (and explicit).
2 Better pf (conceptual) by Prasad-Rapinchuk [2006].
3 Today: idea in another proof (direct, natural) [2015].
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Defn. Γ universally arith " ∀n,∀∀∀ρ : G → GLn(R),
∃M ∈ GLn(R), M−1 ρ(Γ)M ⊆ GLn(Z)

(
and Γ is

arithmetic

)
.

Eg.G = SLk(R) ⇒ SLk(Z) is univ arith. (Q-split⇒univ arith)

Converse: SLk(Z) is the only one up to commensurability.

Proof.

ρ : G =→ SLk(R).
Γ is univ arith

⇒ M−1ρ(Γ)M ⊆ SLk(Z)
⇒ M−1ΓM % SLk(Z).

Example
G = SO(k,1) and k even ⇒ Γ is univ arith.
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Defn. Γ universally arith " ∀∀∀ρ : G → GLn(R),
∃M ∈ GLn(R), M−1 ρ(Γ)M ⊆ GLn(Z)

(
and Γ is

arithmetic

)
.

Eg. G = SO(k,1) and k even ⇒ Γ is univ arith.

Proof. k even ⇒
1 Z

(
SO(k,1)C

)
is trivial,

2 SO(k,1)C has no outer automorphisms.

There are two obstructions to Γ being univ arith:
1 a cohomology class in H2

(
Gal(C/Q);Z(GC)

)
,

2 an outer automorphism of GC.

Defn. G C-universal " ∀n,∀∀∀ρ : G → GLn(C),
∃M ∈ GLn(C), M−1 ρ(G)M ⊆ GLn(R).
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Defn. G C-universal " ∀n,∀∀∀ρ : G → GLn(C),
∃M ∈ GLn(C), M−1 ρ(G)M ⊆ GLn(R).

Assume ρ : G → GLn(C) irred. ρ : GC → GLn(C).
If ρ(G) ⊆ GLn(R), then ρ(gC) = ρ(gC).

In general: ρ(gC) = ρ
(
ϕ(gC)

)
, ∃ϕ ∈ Aut(GC)

⇒ ρ(g) = ρ(ϵ−1gϵ) = ρ(ϵ)−1ρ(g)ρ(ϵ) if # outer aut.

M−1ρ(g)M ?= M−1ρ(g)M = M−1ρ(ϵ)−1 ρ(g)ρ(ϵ)M .

ρ(ϵ) ?= MM−1
, ∃M ∈ GLn(C).

Obstruction: need ρ(ϵ)ρ(ϵ) = I. (")

Cor. G is C-universal if ϵ ϵ = e.
Exer. ϵ ϵ ∈ Z(GC). (because ρ(g) = ρ(g))
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Abstract reformulation
Galois group Gal(C/R) acts on GC:
H1
(
Gal(C/R);GC

)
= { ϵ ∈ GC | ϵ ϵ = e }/∼ (ηη−1 ∼ e)

= { ϵ ∈ GC | ϵ ϵ ∈ Z(GC) }/∼

Choice of [ϵ] ↔ choice of G in GC.
E.g., H1(Gal(C/R); Aut SO(5,C)

)
←→ { SO(5), SO(4,1), SO(3,2) }.

Short exact sequence e → Z(GC)→ GC → GC → e
yields H1

(
Gal(C/R);GC

)
→ H2

(
Gal(C/R);Z(GC)

)
.

[ϵ]$ ϵ ϵ =: τ ∈ Z(GC)

H2
(
Gal(C/R);Z(GC)

)
= {τ ∈ Z(GC) | τ = τ }/{z z}

G% τ ∈ Z(G) (cohomology class in H2)
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G% τ ∈ Z(G) (cohomology class in H2)

Let ρ : G → GLn(C) irreducible.
Schur’s Lemma: τ ∈ Z(G)⇒ ρ(τ) is a scalar.

ρ(τ) is a root of unity, and τ = τ , so ρ(τ) = ±1.

Proposition (Tits)
Assume GC has no outer auts. (G is an inner form)

ρ(τ) = 1 " M−1ρ(G)M ⊆ GLn(R).
ρ(τ) = −1 " M−1ρ(G)M ̸⊆ GLn(R).

Cor. G is C-universal (i.e., ∀ρ, ∃M)
" ρ(τ) = 1 for all ρ " τ = e.

τ has been calculated for every G.
E.g., Spin(k,1) is C-univ iff k ≡ 0,1,2 (mod 8).
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G% τ ∈ Z(G) (cohomology class in H2)

Same idea
Arith subgrp Γ % τQ ∈ H2

(
Gal(C/Q);Z(GC)

)

M−1 ρ(Γ)M ⊆ GLn(Z)" ρ∗τQ trivial
in H2

(
Gal(C/Q);µn

)
.

Proof that G has universally arith subgroup.

G% ϵ ∈ H1
(
Gal(C/R);GC

)
% τ = ϵ ϵ ∈ Z(GC).

Note that ϵ lifts to ϵ̃ ∈ H1
(
Gal(C/R);GC/⟨τ⟩

)
.

Lem. ϵ̃ lifts to ϵ̃Q ∈ H1
(
Gal(Q[i]/Q);GQ[i]/⟨τ⟩

)
.

ϵQ % arithmetic subgroup Γ of G with τQ ∈ ⟨τ⟩.
If ρ∗τ is trivial in H2

(
Gal(C/R);µn

)
,

then τQ ∈ ⟨τ⟩ ⊆ kerρ,
so ρ∗τQ is trivial in H2

(
Gal(C/Q);µn

)
.

Dave Witte Morris (Univ. of Lethbridge) Representations all map into GLn(Z) Stanford, May 2015 8 / 12

Real representations

Irred reps of G over C are well known. (“highest weight”)

Let W = vector space over C,
ρC : G → GL(W) 3 GLn(C) irreducible.

Thinking of W as a vector space over R yields
ρ : G → GL(WR) 3 GL2n(R).

Exer. WR is irred or WR = V ⊕ V (2 copies of an irred)

Proposition
This provides a one-to-one correspondence

{ irred reps over C }/∼ ←→ { irred reps over R }
where V ∼ V (complex conjugate).
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Lemma (Schur’s Lemma)
ρ : G → EndR(V) 3 Matn×n(R) irreducible.
C = EndG(Rn)

= {T ∈ Matn×n(R) | T ρ(g) = ρ(g)T , ∀g }
⇒ C is a division algebra (every nonzero el’t has inverse)

⇒ C = R, C, or H.

Exercise
EndG(V ⊗ C) 3 EndG(V)⊗ C.

Corollary
V ⊗ C =

1 irreducible if C = R (ρ(τ) = 1)
2 W ⊕W if C = H (ρ(τ) = −1)
3 W ⊕W (not 3) if C = C (outer automorphism)
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