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Notation.
e g = real semisimple Lie algebra
(can also state results for G)
e W = (finite dim’l) C-representation of g
e V = (finite dim’l) R-representation of g

Defn. R-form of W = R-subspace V of W, s.t.
e V is g-invariant;
e IV = R-span of C-basis of W
S W=VaeiV
SW=2VerC =:Vc

Prop. g R-split
(i.e., g = R-span of Chev. basis of gc)
= every C-repn of g has a R-form.

Proof. Wma W irred (bcs comp’ly red’ble).
A = highest weight of W.
v € Wy.
A(h) CR = U(g)v is proper R-submodule. []

Notation. Chevalley basis of gc:
{ha}aed>+ U {xa}aeqﬁ
L4 ha € b(C;
o h), =2hy/k(ha,ha);
® T, € (g(C)a;
o a(t) = k(t, ha), Vt € be;

Na gTats ifa+ e,
o [z, 23] = {—h; ifa+p3=0,
0 f0#a+p5¢d.

Cor. gc has a R-form gg, s.t.
every C-repn of gc has a R-form.

Rem. Today: replace C and R with R and Q
(especially when g is compact).

Lem (Schur). V irred =

e Endy(V) =R, C, or H.
o Endy(V) =R & Vi is irred.

Proof. V irred < Endgy(V) is division algebra.

The only div algs over R are R, C, and H.

Endg(V) = Endy(V) ®@g C
e RrC=C div alg
e CrrC=CoC
e H®r C = Matgyo(C)

not div alg
not div alg [ ]
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Lem. (a) Every C-repn W of g has a R-form
& (b) Vi is irred, V¥ irred R-repn V
& (c) Wlg is reducible, ¥V C-repn W

Proof. (a = b) V¢ reducible
= VeorC=ZW e W,
> (VerC)a (VL ®r C)
= Vie V) orC
=V =V, ®V;is reducible. —+«

(a = ¢) R-form of W is a R-submodule.

(b= a) Wma W irred.

W ®gr C reducible
= W/|gr reducible (c)
= Wk2VioV,
= W=V, ®:i1V;

so V; is a R-form of W. []

Eg. The 2D repn of SU(2) has no R-form.

Analogously:
e gop = Q-form of g
= Q-subalgebra, Q-span of R-basis of g
e Q-form of V' = gg-inv, Q-span of R-basis

Lem. FEvery R-repn V' of g has a Q-form
& Vo ®qgR is irred, V irred Q-repn Vg of go
& Endg, (Vo) @ R=R, C, H, V irred Vg

Prop. gg Q-split (i.e., Q-span of Chev. basis)
= every R-repn of g has a Q-form.

Cor. g split =
3 gg, s.t. every R-repn of g has a Q-form.

Thm (Raghunathan, Eberlein). g compact =
3 gg, s.t. every R-repn of g has a Q-form.
go = Q-span of {ihy, 24 +T_o,i(za —2_0a)}-

Cor. Vg, d gg, s.t. every R-repn of g has Q-form.

Thm (Raghunathan). Assume

e g compact;

e go is Qli]-split;

e longest el’t of Weyl grp of g is def’d over Q.
Then every R-repn of g has a Q-form.

Rem. The obvious compact Q-form is Q[:]-split,
and every el’t of the Weyl group is def’d over Q.

Eg. 39, go, W, s.t.
e IV has a R-form;
e IV has a Q[i]-form;
e IV does not have a Q-form.
Can take g = s[(2,R) (split) or so(8) (compact).

g = sl(2,R): in alg’ic terms, 3 quat. alg D over Q,
s.t. D is div alg, but splits over R and Q(7).

Concrete construction: Let gg = Q-span of

o Va)- (40) (5 %)

R-basis of g, brackets in Q = gg is a Q-form.

2D real repn of g defined over Q
= 3 g€ GL(2,R), s.t. ¢ ggg C sl(2,Q).

= g 'gog = 51(2,Q).
El'ts of gg have nonzero det (bcs 3 # a® + b?),

but s[(2, Q) has elements of determinant 0. —«

Mat ent’s of gg in Q(i) for basis {(1,4), V3(1, —i)}.




Lem. Assume
e g compact;
e VRrCEWaW (irred);
o \:t — C highest weight of Vc; and
e w € Ng(t) longest el’t of the Weyl group.

Then
9 Id if V is reducible;
w |V<ck = “1d

if V' is irreducible .

Proof only uses the fact that g splits over R][i]:

Lem. Assume
e go splits over Qli], and g is compact;
¢ Vo®q Q]| ZU®U (irred);
e to = max’l torus of go (split over Q[i] );
o \:tg — QIi| highest weight; and

o w € Ng(t)g longest el’t of the Weyl group.

Then
o JId  if Vo is reducible;
w |V<cA | —Id if Vi is drreducible .

Thm (Raghunathan). Assume

e g compact;

e go s Q[i|-split;

e Jongest el’t of Weyl grp of g is def’d over Q.
Then every R-repn of g has a Q-form.

Proof. Let Vg = irred Q-repn of gg.
(We wish to show Vg is irred.)

Ve is either irred or sum of two irreds
(bes go splits over Q[i]).

Case 1. Vi is irred. Then Vg is irred.

Case 2. Vo = sum of two isomorphic irreds.
We use the two lemmas:
Vo irred

= w2|VCA = —Id

= VR is irreducible.

Case 3. Vo = sum of two different irreds.
Let C = Endgy(V).

This case: Endg, (Vo)) = Q[i] @ Qli].

Thus, C = div alg, s.t. C ® Q[i] = Q[i] & Q[¢].

e Q[i] ® Q[i] commutative = C is a field.

e dimg;1(Q[i] ® Q[i]) = 2 = dimg C = 2.

e C ® Q[i] = C[v/—1] not field, = i € C.
Therefore C 2 Q[i].

So

Endg(Vg) =CoR=QioR=C
is a field.
Schur’s Lemma: Vg is irreducible. [ ]

Proof of Raghunathan’s Lemma (w2|VCA =+1d).

Step 1. C = Endy(V') 4-dim’l over R, and
V is irred < C is a div alg.
Endg(Ve) = Matay2(C) is 4D + Schur’s Lemma.

Step 2. V(5\+VC_>‘ 1s a 4D subspace, def’d over R.

Eigenvals of t purely imag = A\(t) = —A(t).
So V@& + Vg is defined over R.

Ve = sum of two isomorphic irreds = 4D.

Step 3. E = (VR + V)NV is faithful C-module.
C centralizes g = weight space is C-invariant.
VZ generates Vo (as g-module) = E is faithful.

Step 4. w2|V€ is either Id or —Id.
W (@) =w(® ) =0T = w? e T.
w(A) ==X = w\)(t)=1/(\(t)) fort € T
PR B S
wA)(w?)  Mw lw?w)  AMw?)
Thus, M\(w?) = £1.




Step 5. FE is invariant under w and t, so
o {w} Ut gens a subalg A of Endr(E), and
Matax2(R) iff w?|y =1d ,
H iff Wy =—1d .

Invariance is clear.

o A X

Image of tin A is iR C C, negated by w.
Clw] =2 H or Matay2(R).

Step 6. End 4(FE) is (anti)isomorphic to A.
Define L, R: A — Endgr(A) by
L(a)x = ax and R(a)xr = za.
Then Endp4)(A) = R(A),
so suffices to show E = L (as A-modules).

A=H: dimg F =4
= FE = 1D vector space over A
= FEF=1L.

A = Matgy2(R): unique nontriv (2D) irred

= E = L (same dim, no trivial submods).

Step 7. The algebra C is (anti)isomorphic to A.
E faithful = C = C|g.

Defn of C = C|lg C End4(F) =" A.

dimRC|E =4 =dimr A = C|E >~ dimp A.

Step 8. Completion of proof.
Combine Steps 1, 7, and 5:
V isirred < C is a div alg
< Ais a div alg
s w?ly =-1d. [
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