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Notation.
• g = real semisimple Lie algebra

(can also state results for G)
• W = (finite dim’l) C-representation of g

• V = (finite dim’l) R-representation of g

Defn. R-form of W = R-subspace V of W , s.t.
• V is g-invariant;
• V = R-span of C-basis of W

⇔ W = V ⊕ iV

⇔ W ∼= V ⊗R C =: VC

Prop. g R-split
(i.e., g = R-span of Chev. basis of gC)

⇒ every C-repn of g has a R-form.

Proof. Wma W irred (bcs comp’ly red’ble).
λ = highest weight of W .
v ∈ Wλ.

λ(h) ⊂ R ⇒ U(g)v is proper R-submodule.

Notation. Chevalley basis of gC:
{hα}α∈Φ+ ∪ {xα}α∈Φ:

• hα ∈ hC;
• h∗

α = 2hα/κ(hα, hα);
• xα ∈ (gC)α;
• α(t) = κ(t, hα), ∀t ∈ hC;

• [xα, xβ ] =

{
Nα,βxα+β if α + β ∈ Φ,
−h∗

α if α + β = 0,
0 if 0 6= α + β /∈ Φ .

Cor. gC has a R-form g0, s.t.
every C-repn of gC has a R-form.

Rem. Today: replace C and R with R and Q
(especially when g is compact).

Lem (Schur). V irred ⇒
• Endg(V ) ∼= R, C, or H.
• Endg(V ) ∼= R ⇔ VC is irred.

Proof. V irred ⇔ Endg(V ) is division algebra.

The only div algs over R are R, C, and H.

Endg(V ) = Endg(V ) ⊗R C
• R ⊗R C = C div alg
• C ⊗R C ∼= C ⊕ C not div alg
• H ⊗R C ∼= Mat2×2(C) not div alg

October 15, 2001



2

Lem. (a) Every C-repn W of g has a R-form
⇔ (b) VC is irred, ∀ irred R-repn V

⇔ (c) W |R is reducible, ∀ C-repn W

Proof. (a ⇒ b) VC reducible
⇒ V ⊗R C ∼= W1 ⊕ W2

∼= (V1 ⊗R C) ⊕ (V1 ⊗R C)
∼= (V1 ⊕ V2) ⊗R C

⇒ V ∼= V1 ⊕ V2 is reducible. →←

(a ⇒ c) R-form of W is a R-submodule.

(b ⇒ a) Wma W irred.
W ⊗R C reducible

⇒ W |R reducible (c)
⇒ W |R ∼= V1 ⊕ V2

⇒ W = V1 ⊕ iV1

so V1 is a R-form of W .

Eg. The 2D repn of SU(2) has no R-form.

Analogously:
• gQ = Q-form of g

= Q-subalgebra, Q-span of R-basis of g

• Q-form of V = gQ-inv, Q-span of R-basis

Lem. Every R-repn V of g has a Q-form
⇔ VQ ⊗Q R is irred, ∀ irred Q-repn VQ of gQ

⇔ EndgQ(VQ) ⊗Q R ∼= R, C, H, ∀ irred VQ

Prop. gQ Q-split (i.e., Q-span of Chev. basis)
⇒ every R-repn of g has a Q-form.

Cor. g split ⇒
∃ gQ, s.t. every R-repn of g has a Q-form.

Thm (Raghunathan, Eberlein). g compact ⇒
∃ gQ, s.t. every R-repn of g has a Q-form.

gQ = Q-span of {ihα, xα + x−α, i(xα − x−α)}.

Cor. ∀g, ∃ gQ, s.t. every R-repn of g has Q-form.

Thm (Raghunathan). Assume
• g compact;
• gQ is Q[i]-split;
• longest el’t of Weyl grp of g is def ’d over Q.

Then every R-repn of g has a Q-form.

Rem. The obvious compact Q-form is Q[i]-split,
and every el’t of the Weyl group is def’d over Q.

Eg. ∃ g, gQ, W , s.t.
• W has a R-form;
• W has a Q[i]-form;
• W does not have a Q-form.

Can take g = sl(2, R) (split) or so(8) (compact).

g = sl(2, R): in alg’ic terms, ∃ quat. alg D over Q,
s.t. D is div alg, but splits over R and Q(i).

Concrete construction: Let gQ = Q-span of{(√
3 0

0 −
√

3

)
,

(
0 1

−1 0

)
,

(
0

√
3√

3 0

)}

R-basis of g, brackets in Q ⇒ gQ is a Q-form.

2D real repn of g defined over Q
⇒ ∃ g ∈ GL(2, R), s.t. g−1gQg ⊂ sl(2, Q).
⇒ g−1gQg = sl(2, Q).

El’ts of gQ have nonzero det (bcs 3 6= a2 + b2),
but sl(2, Q) has elements of determinant 0. →←

Mat ent’s of gQ in Q(i) for basis {(1, i),
√

3(1,−i)}.
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Lem. Assume
• g compact;
• V ⊗R C ∼= W ⊕ W (irred);
• λ: t → C highest weight of VC; and
• w ∈ NG(t) longest el’t of the Weyl group.

Then

w2|V λ
C

=
{

Id if V is reducible;
−Id if V is irreducible .

Proof only uses the fact that g splits over R[i]:

Lem. Assume
• gQ splits over Q[i], and g is compact;
• VQ ⊗Q Q[i] ∼= U ⊕ U (irred);
• tQ = max’l torus of gQ (split over Q[i]);
• λ: tQ → Q[i] highest weight; and
• w ∈ NG(t)Q longest el’t of the Weyl group.

Then

w2|V λ
C

=
{

Id if VQ is reducible;
−Id if VQ is irreducible .

Thm (Raghunathan). Assume
• g compact;
• gQ is Q[i]-split;
• longest el’t of Weyl grp of g is def ’d over Q.

Then every R-repn of g has a Q-form.

Proof. Let VQ = irred Q-repn of gQ.
(We wish to show VR is irred.)

VC is either irred or sum of two irreds
(bcs gQ splits over Q[i]).

Case 1. VC is irred. Then VR is irred.

Case 2. VC = sum of two isomorphic irreds.
We use the two lemmas:
VQ irred

⇒ w2|V λ
C

= −Id
⇒ VR is irreducible.

Case 3. VC = sum of two different irreds.
Let C = Endg(V ).
This case: EndgQ(VQ[i]) ∼= Q[i] ⊕ Q[i].
Thus, C = div alg, s.t. C ⊗ Q[i] ∼= Q[i] ⊕ Q[i].

• Q[i] ⊕ Q[i] commutative ⇒ C is a field.
• dimQ[i](Q[i] ⊕ Q[i]) = 2 ⇒ dimQ C = 2.
• C ⊗ Q[i] = C[

√
−1] not field, ⇒ i ∈ C.

Therefore C ∼= Q[i].

So
Endg(VR) ∼= C ⊗ R ∼= Q[i] ⊗ R ∼= C

is a field.
Schur’s Lemma: VR is irreducible.

Proof of Raghunathan’s Lemma (w2|V λ
C

= ±Id).

Step 1. C = Endg(V ) 4-dim’l over R, and
V is irred ⇔ C is a div alg.

Endg(VC) ∼= Mat2×2(C) is 4D + Schur’s Lemma.

Step 2. V λ
C +V −λ

C is a 4D subspace, def ’d over R.
Eigenvals of t purely imag ⇒ λ(t) = −λ(t).
So V λ

C + V −λ
C is defined over R.

VC = sum of two isomorphic irreds ⇒ 4D.

Step 3. E = (V λ
C +V −λ

C )∩V is faithful C-module.
C centralizes g ⇒ weight space is C-invariant.
V λ

C generates VC (as g-module) ⇒ E is faithful.

Step 4. w2|V λ
C

is either Id or −Id.
w2(Φ+) = w(Φ−) = Φ+ ⇒ w2 ∈ T .
w(λ) = −λ ⇒ w(λ)(t) = 1/

(
λ(t)

)
for t ∈ T .

λ(w2) =
1

w(λ)(w2)
=

1
λ(w−1w2w)

=
1

λ(w2)
.

Thus, λ(w2) = ±1.
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Step 5. E is invariant under w and t, so
• {w} ∪ t gens a subalg A of EndR(E), and

• A ∼=

{
Mat2×2(R) iff w2|V λ

C
= Id ,

H iff w2|V λ
C

= −Id .
Invariance is clear.

Image of t in A is iR ⊂ C, negated by w.
C[w] ∼= H or Mat2×2(R).

Step 6. EndA(E) is (anti)isomorphic to A.
Define L, R:A → EndR(A) by

L(a)x = ax and R(a)x = xa.
Then EndL(A)(A) = R(A),
so suffices to show E ∼= L (as A-modules).

A = H: dimR E = 4
⇒ E = 1D vector space over A
⇒ E ∼= L.

A ∼= Mat2×2(R): unique nontriv (2D) irred
⇒ E ∼= L (same dim, no trivial submods).

Step 7. The algebra C is (anti)isomorphic to A.
E faithful ⇒ C ∼= C|E.
Defn of C ⇒ C|E ⊂ EndA(E) ∼=∗ A.
dimR C|E = 4 = dimR A ⇒ C|E ∼= dimR A.

Step 8. Completion of proof.
Combine Steps 1, 7, and 5:

V is irred ⇔ C is a div alg
⇔ A is a div alg
⇔ w2|V λ

C
= −Id.
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