${\mathbb Q} ext{-forms}$ of real representations	Notation.
of compact semisimple Lie groups (after Raghunathan and Eberlein) Dave Witte	 g = real semisimple Lie algebra (can also state results for G) W = (finite dim'l) C-representation of g V = (finite dim'l) R-representation of g
Department of Mathematics Oklahoma State University Stillwater, OK 74078	$Defn. \mathbb{R}\text{-form of } W = \mathbb{R}\text{-subspace } V \text{ of } W, \text{ s.t.}$ $\bullet V \text{ is } \mathfrak{g}\text{-invariant;}$ $\bullet V = \mathbb{R}\text{-span of } \mathbb{C}\text{-basis of } W$ $\Leftrightarrow W = V \oplus iV$ $\Leftrightarrow W \cong V \otimes_{\mathbb{R}} \mathbb{C} =: V_{\mathbb{C}}$ $Prop. \ \mathfrak{g} \ \mathbb{R}\text{-split}$ $(i.e., \ \mathfrak{g} = \mathbb{R}\text{-span of } Chev. \ basis \ of \ \mathfrak{g}_{\mathbb{C}})$ $\Rightarrow every \ \mathbb{C}\text{-repn of } \mathfrak{g} \ has \ a \ \mathbb{R}\text{-form.}$ $Proof. \ \text{Wma } W \ \text{irred (bcs comp'ly red'ble).}$ $\lambda = \text{highest weight of } W.$ $v \in W_{\lambda}.$ $\lambda(\mathfrak{h}) \subset \mathbb{R} \Rightarrow U(\mathfrak{g})v \text{ is proper } \mathbb{R}\text{-submodule.}$
Notation. Chevalley basis of $\mathfrak{g}_{\mathbb{C}}$: $\{h_{\alpha}\}_{\alpha\in\Phi^{+}} \cup \{x_{\alpha}\}_{\alpha\in\Phi}$: • $h_{\alpha} \in \mathfrak{h}_{\mathbb{C}}$; • $h_{\alpha}^{*} = 2h_{\alpha}/\kappa(h_{\alpha}, h_{\alpha})$; • $x_{\alpha} \in (\mathfrak{g}_{\mathbb{C}})_{\alpha}$; • $\alpha(t) = \kappa(t, h_{\alpha}), \forall t \in \mathfrak{h}_{\mathbb{C}}$; • $\alpha(t) = \kappa(t, h_{\alpha}), \forall t \in \mathfrak{h}_{\mathbb{C}}$; • $[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ -h_{\alpha}^{*} & \text{if } \alpha + \beta = 0, \\ 0 & \text{if } 0 \neq \alpha + \beta \notin \Phi \end{cases}$.	 Cor. g_C has a ℝ-form g₀, s.t. every C-repn of g_C has a R-form. Rem. Today: replace C and R with R and Q (especially when g is compact). Lem (Schur). V irred ⇒ End_g(V) ≅ R, C, or H. End_g(V) ≅ R ⇔ V_C is irred.
$\bigcup 0 \qquad \text{if } 0 \neq \alpha + \beta \notin \Phi \ .$	• $\operatorname{End}_{\mathfrak{g}}(V) \cong \mathbb{R} \Leftrightarrow V_{\mathbb{C}}$ is irred. <i>Proof.</i> V irred $\Leftrightarrow \operatorname{End}_{\mathfrak{g}}(V)$ is division algebra.

The only div algs over \mathbb{R} are \mathbb{R} , \mathbb{C} , and \mathbb{H} .

 $\operatorname{End}_{\mathfrak{g}}(V) = \operatorname{End}_{\mathfrak{g}}(V) \otimes_{\mathbb{R}} \mathbb{C}$ • $\mathbb{R} \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C}$

- $\begin{aligned} \bullet \ \mathbb{R} \otimes_{\mathbb{R}} \mathbb{C} &= \mathbb{C} & \text{div alg} \\ \bullet \ \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} &\cong \mathbb{C} \oplus \mathbb{C} & \text{not div alg} \end{aligned}$
- $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \cong \operatorname{Mat}_{2 \times 2}(\mathbb{C})$ not div alg

Lem. (a) Every \mathbb{C} -repn W of \mathfrak{g} has a \mathbb{R} -form	Analogously:
$\Leftrightarrow (b) \ V_{\mathbb{C}} \ is \ irred, \ \forall \ irred \ \mathbb{R} \text{-repn } V$ $\Leftrightarrow (c) \ W _{\mathbb{R}} \ is \ reducible, \ \forall \ \mathbb{C} \text{-repn } W$	• $\mathfrak{g}_{\mathbb{Q}} = \mathbb{Q}$ -form of \mathfrak{g} = \mathbb{Q} -subalgebra, \mathbb{Q} -span of \mathbb{R} -basis of \mathfrak{g}
\leftrightarrow (c) \vee \mathbb{R} is reducible, \vee C-replie \vee	• \mathbb{Q} -form of $V = \mathfrak{g}_{\mathbb{Q}}$ -inv, \mathbb{Q} -span of \mathbb{R} -basis
<i>Proof.</i> $(a \Rightarrow b) V_{\mathbb{C}}$ reducible	Lem. Every \mathbb{R} -repn V of \mathfrak{g} has a \mathbb{Q} -form
$\Rightarrow V \otimes_{\mathbb{R}} \mathbb{C} \cong W_1 \oplus W_2$ $\approx (V \otimes_{\mathbb{C}} \mathbb{C}) \oplus (V \otimes_{\mathbb{C}} \mathbb{C})$	$\Leftrightarrow V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R} \text{ is irred, } \forall \text{ irred } \mathbb{Q}\text{-repn } V_{\mathbb{Q}} \text{ of } \mathfrak{g}_{\mathbb{Q}}$
$ \cong (V_1 \otimes_{\mathbb{R}} \mathbb{C}) \oplus (V_1 \otimes_{\mathbb{R}} \mathbb{C}) \cong (V_1 \oplus V_2) \otimes_{\mathbb{R}} \mathbb{C} $	$\Leftrightarrow \operatorname{End}_{\mathfrak{g}_{\mathbb{Q}}}(V_{\mathbb{Q}}) \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}, \ \mathbb{C}, \ \mathbb{H}, \ \forall \ irred \ V_{\mathbb{Q}}$
$\Rightarrow V \cong V_1 \oplus V_2 \text{ is reducible.} \rightarrow \leftarrow$	Prop. $\mathfrak{g}_{\mathbb{Q}}$ \mathbb{Q} -split (i.e., \mathbb{Q} -span of Chev. basis)
$(a \Rightarrow c) \mathbb{R}$ -form of W is a \mathbb{R} -submodule.	\Rightarrow every \mathbb{R} -repn of \mathfrak{g} has a \mathbb{Q} -form.
$(b \Rightarrow a)$ Wma W irred.	Cor. \mathfrak{g} split \Rightarrow
$W \otimes_{\mathbb{R}} \mathbb{C}$ reducible	$\exists \ \mathfrak{g}_{\mathbb{Q}}, \ s.t. \ every \ \mathbb{R}\text{-repn of } \mathfrak{g} \ has \ a \ \mathbb{Q}\text{-form.}$
$\Rightarrow W _{\mathbb{R}}$ reducible (c)	Thm (Raghunathan, Eberlein). \mathfrak{g} compact \Rightarrow
$\Rightarrow W _{\mathbb{R}} \cong V_1 \oplus V_2$	$\exists \ \mathfrak{g}_{\mathbb{Q}}, \ s.t. \ every \ \mathbb{R}\text{-repn of } \mathfrak{g} \ has \ a \ \mathbb{Q}\text{-form.}$
$\Rightarrow W = V_1 \oplus iV_1$ so V_1 is a \mathbb{R} -form of W .	$\mathfrak{g}_{\mathbb{Q}} = \mathbb{Q}\text{-span of } \{ih_{\alpha}, x_{\alpha} + x_{-\alpha}, i(x_{\alpha} - x_{-\alpha})\}.$
	Cor. $\forall \mathfrak{g}, \exists \mathfrak{g}_{\mathbb{Q}}, s.t. every \mathbb{R}$ -repn of \mathfrak{g} has \mathbb{Q} -form.
<i>Eg.</i> The 2 <i>D</i> repn of SU(2) has no \mathbb{R} -form.	Cor. $\forall \mathfrak{g}, \ \exists \mathfrak{g}_{\mathbb{Q}}, s.t. every \mathbb{R}$ -reput of \mathfrak{g} has \mathbb{Q} -form.
Thm (Raghunathan). Assume	Eq. $\exists \ \mathfrak{g}, \ \mathfrak{g}_{\mathbb{Q}}, \ W, \ \text{s.t.}$
• g compact;	• W has a \mathbb{R} -form;
• $\mathfrak{g}_{\mathbb{Q}}$ is $\mathbb{Q}[i]$ -split;	• W has a $\mathbb{Q}[i]$ -form;
• longest el't of Weyl grp of \mathfrak{g} is def'd over \mathbb{Q} .	• W does not have a \mathbb{Q} -form.
Then every \mathbb{R} -repn of \mathfrak{g} has a \mathbb{Q} -form.	Can take $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R})$ (split) or $\mathfrak{so}(8)$ (compact).
<i>Rem.</i> The obvious compact \mathbb{Q} -form is $\mathbb{Q}[i]$ -split, and every el't of the Weyl group is def'd over \mathbb{Q} .	$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R})$: in alg'ic terms, \exists quat. alg D over \mathbb{Q} , s.t. D is div alg, but splits over \mathbb{R} and $\mathbb{Q}(i)$.
	Concrete construction: Let $\mathfrak{g}_{\mathbb{Q}} = \mathbb{Q}$ -span of $\left\{ \begin{pmatrix} \sqrt{3} & 0 \\ 0 & -\sqrt{3} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \sqrt{3} \\ \sqrt{3} & 0 \end{pmatrix} \right\}$ \mathbb{R} -basis of \mathfrak{g} , brackets in $\mathbb{Q} \Rightarrow \mathfrak{g}_{\mathbb{Q}}$ is a \mathbb{Q} -form.
	2D real repn of \mathfrak{g} defined over \mathbb{Q} $\Rightarrow \exists g \in \operatorname{GL}(2, \mathbb{R}), \text{ s.t. } g^{-1}\mathfrak{g}_{\mathbb{Q}}g \subset \mathfrak{sl}(2, \mathbb{Q}).$ $\Rightarrow g^{-1}\mathfrak{g}_{\mathbb{Q}}g = \mathfrak{sl}(2, \mathbb{Q}).$ El'ts of $\mathfrak{g}_{\mathbb{Q}}$ have nonzero det (bcs $3 \neq a^2 + b^2$), but $\mathfrak{sl}(2, \mathbb{Q})$ has elements of determinant $0. \rightarrow \leftarrow$
	Mat ent's of $\mathfrak{g}_{\mathbb{Q}}$ in $\mathbb{Q}(i)$ for basis $\{(1,i), \sqrt{3}(1,-i)\}$.

Analogously:

Lem. Assume	Thm (Raghunathan). Assume
• g compact;	• g compact;
• $V \otimes_{\mathbb{R}} \mathbb{C} \cong W \oplus W \ (irred);$	• $\mathfrak{g}_{\mathbb{Q}}$ is $\mathbb{Q}[i]$ -split;
• $\lambda: \mathfrak{t} \to \mathbb{C}$ highest weight of $V_{\mathbb{C}}$; and	• longest el't of Weyl grp of \mathfrak{g} is def'd over \mathbb{Q} .
• $w \in N_G(\mathfrak{t})$ longest el't of the Weyl group.	Then every \mathbb{R} -repn of \mathfrak{g} has a \mathbb{Q} -form.
Then	
$w^2 _{V_{\mathbb{C}}^{\lambda}} = \begin{cases} \mathrm{Id} & \text{if } V \text{ is reducible;} \\ -\mathrm{Id} & \text{if } V \text{ is irreducible} \end{cases}.$	<i>Proof.</i> Let $V_{\mathbb{Q}} = $ irred \mathbb{Q} -repn of $\mathfrak{g}_{\mathbb{Q}}$.
$ = V_{C} $ (-Id if V is irreducible.	(We wish to show $V_{\mathbb{R}}$ is irred.)
Proof only uses the fact that \mathfrak{g} splits over $\mathbb{R}[i]$:	$V_{\mathbb{C}}$ is either irred or sum of two irreds
	(bcs $\mathfrak{g}_{\mathbb{Q}}$ splits over $\mathbb{Q}[i]$).
Lem. Assume	
• $\mathfrak{g}_{\mathbb{Q}}$ splits over $\mathbb{Q}[i]$, and \mathfrak{g} is compact;	Case 1. $V_{\mathbb{C}}$ is irred. Then $V_{\mathbb{R}}$ is irred.
• $V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{Q}[i] \cong U \oplus U \ (irred);$	Case 2. $V_{\mathbb{C}} = sum \ of \ two \ isomorphic \ irreds.$
• $\mathfrak{t}_{\mathbb{Q}} = max'l \text{ torus of } \mathfrak{g}_{\mathbb{Q}} \text{ (split over } \mathbb{Q}[i]);$	We use the two lemmas:
• $\lambda: \mathfrak{t}_{\mathbb{Q}} \to \mathbb{Q}[i]$ highest weight; and	$V_{\mathbb{O}}$ irred
• $w \in N_G(\mathfrak{t})_{\mathbb{Q}}$ longest el't of the Weyl group.	$\Rightarrow w^2 _{V_c^{\lambda}} = -\mathrm{Id}$
Then	$\Rightarrow V_{\mathbb{R}}$ is irreducible.
$w^2 _{V_{\mathbb{C}}^{\lambda}} = \begin{cases} \mathrm{Id} & \text{if } V_{\mathbb{Q}} \text{ is reducible;} \\ -\mathrm{Id} & \text{if } V_{\mathbb{D}} \text{ is irreducible} \end{cases}.$	
$({}^{\omega} V_{\mathbb{C}} -)$ -Id if $V_{\mathbb{D}}$ is irreducible.	

Proof of Raghunathan's Lemma $(w^2|_{V_c^{\lambda}} = \pm \mathrm{Id}).$ Case 3. $V_{\mathbb{C}}$ = sum of two different irreds. Let $\mathcal{C} = \operatorname{End}_{\mathfrak{g}}(V)$. Step 1. $\mathcal{C} = \operatorname{End}_{\mathfrak{a}}(V)$ 4-dim'l over \mathbb{R} , and This case: $\operatorname{End}_{\mathfrak{g}_{\mathbb{Q}}}(V_{\mathbb{Q}[i]}) \cong \mathbb{Q}[i] \oplus \mathbb{Q}[i].$ V is irred $\Leftrightarrow \mathcal{C}$ is a div alg. Thus, $\mathcal{C} = \text{div}$ alg, s.t. $\mathcal{C} \otimes \mathbb{Q}[i] \cong \mathbb{Q}[i] \oplus \mathbb{Q}[i]$. $\operatorname{End}_{\mathfrak{g}}(V_{\mathbb{C}}) \cong \operatorname{Mat}_{2 \times 2}(\mathbb{C})$ is 4D + Schur's Lemma. Step 2. $V_{\mathbb{C}}^{\lambda} + V_{\mathbb{C}}^{-\lambda}$ is a 4D subspace, def'd over \mathbb{R} . • $\mathbb{Q}[i] \oplus \mathbb{Q}[i]$ commutative $\Rightarrow \mathcal{C}$ is a field. Eigenvals of t purely imag $\Rightarrow \overline{\lambda(t)} = -\lambda(t)$. • $\dim_{\mathbb{O}[i]}(\mathbb{Q}[i] \oplus \mathbb{Q}[i]) = 2 \Rightarrow \dim_{\mathbb{O}} \mathcal{C} = 2.$ So $V_{\mathbb{C}}^{\lambda} + V_{\mathbb{C}}^{-\lambda}$ is defined over \mathbb{R} . • $\mathcal{C} \otimes \mathbb{Q}[i] = \mathcal{C}[\sqrt{-1}]$ not field, $\Rightarrow i \in \mathcal{C}$. $V_{\mathbb{C}} =$ sum of two isomorphic irreds \Rightarrow 4D. Therefore $\mathcal{C} \cong \mathbb{Q}[i]$. Step 3. $E = (V_{\mathbb{C}}^{\lambda} + V_{\mathbb{C}}^{-\lambda}) \cap V$ is faithful \mathcal{C} -module. So \mathcal{C} centralizes $\mathfrak{g} \Rightarrow$ weight space is \mathcal{C} -invariant. $\operatorname{End}_{\mathfrak{q}}(V_{\mathbb{R}}) \cong \mathcal{C} \otimes \mathbb{R} \cong \mathbb{Q}[i] \otimes \mathbb{R} \cong \mathbb{C}$ $V_{\mathbb{C}}^{\lambda}$ generates $V_{\mathbb{C}}$ (as \mathfrak{g} -module) $\Rightarrow E$ is faithful. is a field. Step 4. $w^2|_{V_{\mathbb{C}}^{\lambda}}$ is either Id or -Id. $w^2(\Phi^+) = w(\Phi^-) = \Phi^+ \Rightarrow w^2 \in T.$ Schur's Lemma: $V_{\mathbb{R}}$ is irreducible. $w(\lambda) = -\lambda \Rightarrow w(\lambda)(t) = 1/(\lambda(t)) \text{ for } t \in T.$ $\lambda(w^2) = \frac{1}{w(\lambda)(w^2)} = \frac{1}{\lambda(w^{-1}w^2w)} = \frac{1}{\lambda(w^2)}.$ Thus, $\lambda(w^2) = \pm 1$

Step 5. E is invariant under w and \mathfrak{t} , so • $\{w\} \cup \mathfrak{t} \text{ gens a subalg } \mathcal{A} \text{ of } \operatorname{End}_{\mathbb{R}}(E), \text{ and }$ $\begin{cases} \operatorname{Mat}_{2\times 2}(\mathbb{R}) & iff \ w^2|_{V_{\mathbb{C}}^{\lambda}} = \operatorname{Id} ,\\ \mathbb{H} & iff \ w^2|_{V_{\mathbb{C}}^{\lambda}} = -\operatorname{Id} . \end{cases}$ $\bullet \,\, \mathcal{A} \cong$ Invariance is clear. Image of \mathfrak{t} in \mathcal{A} is $i\mathbb{R} \subset \mathbb{C}$, negated by w. $\mathbb{C}[w] \cong \mathbb{H} \text{ or } \operatorname{Mat}_{2 \times 2}(\mathbb{R}).$ Step 6. End_{\mathcal{A}}(E) is (anti)isomorphic to \mathcal{A} . Define $L, R: \mathcal{A} \to \operatorname{End}_{\mathbb{R}}(\mathcal{A})$ by L(a)x = ax and R(a)x = xa. Then $\operatorname{End}_{L(\mathcal{A})}(\mathcal{A}) = R(\mathcal{A}),$ so suffices to show $E \cong L$ (as \mathcal{A} -modules). $\mathcal{A} = \mathbb{H}: \dim_{\mathbb{R}} E = 4$ $\Rightarrow E = 1D$ vector space over \mathcal{A} $\Rightarrow E \cong L.$ $\mathcal{A} \cong \operatorname{Mat}_{2 \times 2}(\mathbb{R})$: unique nontriv (2D) irred $\Rightarrow E \cong L$ (same dim, no trivial submods).

 Step 7. The algebra C is (anti)isomorphic to A.

 E faithful $\Rightarrow C \cong C|_E$.

 Defn of $C \Rightarrow C|_E \subset \operatorname{End}_{\mathcal{A}}(E) \cong^* \mathcal{A}$.

 dim_R $C|_E = 4 = \dim_R \mathcal{A} \Rightarrow C|_E \cong \dim_R \mathcal{A}$.

 Step 8. Completion of proof.

 Combine Steps 1, 7, and 5:

 V is irred $\Leftrightarrow C$ is a div alg

 $\Leftrightarrow \mathcal{A}$ is a div alg

 $\Leftrightarrow w^2|_{V_C^{\lambda}} = -\operatorname{Id}$.

References

The theorem in Section 3 of M. S. Raghunathan, Arithmetic lattices in semisimple groups, *Proc Indian Acad Sci (Math Sci)* 91, no 2, July 1982, 133–138.