Real representations of $\mathfrak{sp}(n)$ have \mathbb{Q} -forms

Dave Witte Morris

Department of Mathematics Oklahoma State University Stillwater, OK 74078

dwitte@math.okstate.edu

http://www.math.okstate.edu/~dwitte

Abstract. Suppose $\{A_1, \ldots, A_\ell\}$ is a basis (over \mathbb{R}) of a Lie algebra \mathfrak{g} of $m \times m$ matrices. If all the entries of each matrix A_1, \ldots, A_ℓ are rational, then it is easy to see that the corresponding structure constants of \mathfrak{g} are rational; that is, $[A_i, A_j] = \sum_k \alpha_{ij}^k A_k$, with $\alpha_{ij}^k \in \mathbb{Q}$. The converse is not usually true, but it does hold (after changing to a different basis of \mathbb{R}^m) if \mathfrak{g} is isomorphic to $\mathfrak{sp}(n)$,

for some n. For Lie algebras other than $\mathfrak{sp}(n)$, it would be interesting to understand which choices of the structure constants α_{ij}^k force A_1, \ldots, A_ℓ to be (similar to) rational matrices. This is relevant to the study of lattices in certain 2-step nilpotent Lie groups.

We consider G = simple group. **Prop.** $G = \text{SL}(n, \mathbb{R})$ (or any \mathbb{R} -split group) \Rightarrow every irred \mathbb{R} -rep'n of G remains irred over \mathbb{C} . *Proof.* Show every \mathbb{C} -rep'n W of G has a \mathbb{R} -form. • $A = \{\text{diagonal matrices}\}$

• λ = highest weight of W (w.r.t. A)

Every root of $\mathfrak{g}_{\mathbb{C}}$ is \mathbb{R} -valued on A (A is \mathbb{R} -split)

 $\Rightarrow \lambda(A) \subset \mathbb{R}$

 $\Rightarrow \text{ we can form } \mathbf{real} \text{ highest-weight module } V$ $\Rightarrow W = V \otimes_{\mathbb{R}} \mathbb{C}. \quad \Box$

At opposite extreme, assume G is **compact**. E.g., G = SO(n). *Eg.* $f(x) = x^2 + 1$

- is irreducible over \mathbb{R} (can't be factored)
- is reducible over \mathbb{C} (can be factored) f(x) = (x - i)(x + i)

Analogue in representation theory.

(All rep'ns are finite dimensional.)

Eg.
$$G = SO(2) = \left\{ \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \right\}$$

has obvious representation on \mathbb{R}^2 .

has obvious representation on \mathbb{R} .

- This is irreducible. (No line is inv't.)
- Complexification is reducible. $\mathbb{R}^{2} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C}^{2}$ $\{(z, iz)\} \text{ is an invariant subspace:}$ $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} z \\ iz \end{bmatrix} = \begin{bmatrix} (\cos \theta)z + (\sin \theta)(iz) \\ (-\sin \theta)z + (\cos \theta)(iz) \end{bmatrix}$ $= \begin{bmatrix} (\cos \theta + i \sin \theta)z \\ i(\cos \theta + i \sin \theta)z \end{bmatrix} = \begin{bmatrix} z' \\ iz' \end{bmatrix}$

Lem. The following are equivalent: a) every irred \mathbb{R} -rep'n of G remains irred over \mathbb{C} b) $\otimes_{\mathbb{R}} \mathbb{C}$: { \mathbb{R} -rep 'ns of G} \rightarrow { \mathbb{C} -rep 'ns of G} is an isomorphism of categories c) every \mathbb{C} -rep'n of G has a \mathbb{R} -form (*i.e.*, $\otimes_{\mathbb{R}} \mathbb{C}$ is onto) d) $\rho: G \to \operatorname{GL}(n, \mathbb{C}) \Rightarrow \rho(G) \subset \operatorname{GL}(n, \mathbb{R})$ after a change of basis e) \forall irred \mathbb{R} -rep'n of G, $\operatorname{End}_G(V) \cong \mathbb{R}$ *Proof.* $(a \Rightarrow c)$: $W_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ is reducible: $W_{\mathbb{R}} = V_1 \oplus V_2 = V_1 \oplus iV_1, \quad \text{so } W = V_1 \otimes_{\mathbb{R}} \mathbb{C}.$ $(a \Leftrightarrow e)$: Schur's Lemma. $V \text{ irred}/\mathbb{R} \Rightarrow \text{End}_G(V) = \text{div'n alg} = \mathbb{R}, \mathbb{C}, \text{ or } \mathbb{H}$ $\Rightarrow \operatorname{End}_G(V_{\mathbb{C}}) = \operatorname{End}_G(V) \otimes_{\mathbb{R}} \mathbb{C}$ $\cong \mathbb{C}, \mathbb{C} \oplus \mathbb{C}, \text{ or } \operatorname{Mat}_{2 \times 2}(\mathbb{C}).$ Only \mathbb{C} is a division alg: $V_{\mathbb{C}}$ irred \Leftrightarrow End_G $(V) = \mathbb{R}$ $(b \Leftrightarrow c)$: $\otimes_{\mathbb{R}} \mathbb{C}$ is always one-to-one.

Assume G is compact. E.g., $G = SO(n)$.	Lem. W has \mathbb{R} -form $\Leftrightarrow \exists G$ -inv conj $\tau: W \to W$.
Lem. W has \mathbb{R} -form $\Leftrightarrow \exists G$ -inv conj $\tau: W \to W$.	• τ is conjugate-linear $\tau(\alpha_1 w_1 + \alpha_2 w_2) = \overline{\alpha_1} \tau(w_1) + \overline{\alpha_2} \tau(w_2).$
Cor. If W has a \mathbb{R} -form, then $\overline{W} \cong W$.	• $\tau^2 = \text{Id.}$ • $\tau(gw) = g \tau(w).$
$\begin{array}{l} Defn. \ \overline{W} = \text{same set of vectors as } W,\\ \text{but different scalar multiplication: } \alpha * v = \overline{\alpha}v.\\ Rem. \ \text{For } W = \mathbb{C}^n, \ \rho(G) \subset \operatorname{GL}(n, \mathbb{R}),\\ \overline{\rho}(g) = \overline{\rho(g)} (\text{conjugate the matrix entries})\\ Proof of \ Cor. \ \tau: W \to \overline{W} \text{ is isomorphism. } \end{array}$	$\begin{array}{l} Proof. \ (\Rightarrow) \ \mathrm{Wolog} \ W = \mathbb{C}^n, \ \rho(G) \subset \mathrm{GL}(n, \mathbb{R}).\\ \overline{gw} = \overline{g} \ \overline{w} = g \ \overline{w} \qquad \Rightarrow \ \mathrm{define} \ \tau(w) = \overline{w}.\\ (\Leftarrow) \ (\tau^2 - 1) = 0 \qquad \Rightarrow \ \mathrm{eigenvalues} = \pm 1.\\ V_+ = +1\text{-eigenspace}, V = -1\text{-eigenspace}\\ W = V_+ \oplus V = V_+ \oplus iV_+ \Rightarrow W = V_+ \otimes_{\mathbb{R}} \mathbb{C}. \end{array}$
Lem. $-(highest weight of W)$ is a weight of \overline{W} .	
<i>Proof.</i> highest wt of \overline{W} is a wt of \overline{W} .	
$ \begin{aligned} \mathbf{\mathfrak{t}} &= \text{maximal torus of } \mathbf{\mathfrak{g}} \\ &\Rightarrow \lambda(\mathbf{\mathfrak{t}}) \subset i\mathbb{R} (\text{bcs } \mathbf{\mathfrak{g}} \text{ is cpct}) \\ &\Rightarrow \overline{\lambda}(t) = \overline{\lambda(t)} = -\lambda(t). \Box \end{aligned} $	

Assume G is compact. E.g., G = SO(n). Lem. If W has a R-form, then $\overline{W} \cong W$. Lem. -(highest weight of W) is a weight of \overline{W} . Rem. W_{λ} has a R-form $\Rightarrow -\lambda$ is a wt of W_{λ} (lowest weight) $\Rightarrow \mathbf{w}_{0}(\lambda) = -\lambda$ ($\mathbf{w}_{0} = \log \operatorname{el't} \operatorname{Weyl} \operatorname{grp}$) Cor. If every C-rep'n of G has a R-form, then $\mathbf{w}_{0}(\lambda) = -\lambda$, $\forall \lambda$ (\Leftrightarrow each $g \in G$ is conj to its inverse g^{-1}). Eg. $\exists \mathbb{C}$ -rep'n of SU(n) with no R-form (n > 2). $\begin{bmatrix} \omega_{1} \\ \omega_{2} \\ \vdots \end{bmatrix} \not\sim \begin{bmatrix} 1/\omega_{1} \\ 1/\omega_{2} \\ \vdots \end{bmatrix}$ Rem. $\mathbf{w}_{0} = -\operatorname{Id} except$: type A_{n} , D_{odd} , E_{6} . (\mathbf{w}_{0} is the "opposition involution.")

Prop. Every \mathbb{C} -rep'n of G has a \mathbb{R} -form if $\mathbf{w}_0(\lambda) = -\lambda, \forall \lambda \quad and \quad G \text{ is adjoint.}$ *Proof.* We have a representation of $\mathfrak{g}_{\mathbb{C}}$ on \mathbb{C}^n . • Let $\mathfrak{g}_S \subset \mathfrak{g}_\mathbb{C}$ be a split \mathbb{R} -form, • σ_G = conjugation on $\mathfrak{g}_{\mathbb{C}}$ corresp to \mathfrak{g} , • σ_S = conjugation on $\mathfrak{g}_{\mathbb{C}}$ corresp to \mathfrak{g}_S . Wolog $\rho(\mathfrak{g}_S) \subset \mathfrak{gl}(n,\mathbb{R})$, so $\overline{gw} = \sigma_S(g) \cdot \overline{w}$. $\sigma_G \circ \sigma_S$ is \mathbb{C} -linear auto of $\mathfrak{g}_{\mathbb{C}}$ $\Rightarrow \sigma_G \circ \sigma_S = \mathrm{Ad}_{\mathfrak{g}} a, \ \exists a \in G_{\mathbb{C}} \quad (\text{outer aut??})$ Define $\tau: \mathbb{C}^n \to \mathbb{C}^n$ by $\tau(w) = a \cdot \overline{w}$. • $\tau(gw) = a \sigma_S(g) \overline{w} = \sigma_G(g) a \overline{w} = g \tau(w)$ • τ is conjugate-linear. • $\tau^2(w) = a \cdot \overline{\tau(w)} = a \cdot \overline{a \cdot w} = a \cdot \sigma_S(a) \cdot w = w.$ $\mathrm{Id} = (\sigma_G)^2 = \mathrm{Ad}_{\mathfrak{g}} (a \cdot \sigma_S(a))$ $\Rightarrow a \cdot \sigma_S(a) \in Z(G) = \{e\}.$ *Note.* Proof shows W_{λ} has \mathbb{R} -form if

 $\mathbf{w}_0(\lambda) = -\lambda$ and $\lambda \in \langle \text{roots} \rangle_{\mathbb{Z}}$ (Z-span).

Prop (Tits). Assume $\mathbf{w}_0(\lambda) = -\lambda$. G = compact, simple Lie group.Write $\lambda = \sum m_{\alpha} \cdot \alpha$, linear comb of simple roots. Tits: Every \mathbb{C} -rep'n of \mathfrak{g} has a \mathbb{R} -form $\Leftrightarrow \langle \times \times \times \rangle$. • $\sum m_{\alpha} \in \frac{1}{2}\mathbb{Z}$ $(2\lambda \in \langle roots \rangle \Rightarrow m_{\alpha} \in \frac{1}{2}\mathbb{Z}).$ Eq. $f(x) = x^2 + 1$ • W_{λ} has a \mathbb{R} -form iff $\sum m_{\alpha} \in \mathbb{Z}$. • is irreducible over \mathbb{R} • but reducible over \mathbb{C} SO(2n+1).Eq. Type B_n Eq. $f(x) = x^2 - 3$ $\lambda_{\ell} = \alpha_1 + 2\alpha_2 + \dots + (\ell - 1)\alpha_{\ell - 1}$ • is irreducible over \mathbb{Q} $+\ell(\alpha_{\ell}+\cdots+\alpha_{n})$ $(\ell < n)$ $(x - \sqrt{3})(x + \sqrt{3})$ • but reducible over \mathbb{R} $\lambda_n = \frac{1}{2}(\alpha_1 + 2\alpha_2 + \dots + n\alpha_n)$ Study the field extension \mathbb{R}/\mathbb{Q} , instead of \mathbb{C}/\mathbb{R} . λ_n has a \mathbb{R} -form $\Leftrightarrow n \equiv 0, 3 \pmod{4}$ Choose basis E_1, \ldots, E_n of \mathfrak{g} , \Leftrightarrow every \mathbb{C} -rep'n of SO(2n+1) has a \mathbb{R} -form. such that the structure constants belong to \mathbb{Q} , Eq. Type C_n cpct symplectic group Sp(2n). i.e., $[E_k, E_\ell] = \sum \alpha_{k,\ell}^j E_j$ with $\alpha_{k,\ell}^j \in \mathbb{Q}$. $\lambda_{\ell} = \alpha_1 + 2\alpha_2 + \dots + (\ell - 1)\alpha_{\ell - 1}$ Then \mathbb{Q} -span (E_1, \ldots, E_n) is a Lie algebra over \mathbb{Q} ; $+\ell\alpha_{\ell}+\cdots+\ell\alpha_{n-1}+\frac{\ell}{2}\alpha_n$ it is a \mathbb{O} -form of \mathfrak{q} . $\exists \mathbb{R}$ -form $\Leftrightarrow \ell \text{ even.}$ $\exists \mathbb{Q}$ -form of \mathfrak{g} : $\langle x_{\alpha} - x_{-\alpha}, i(x_{\alpha} + x_{-\alpha}), ih_{\alpha}^* \rangle$. Not all \mathbb{C} -rep'ns have a \mathbb{R} -form. *Defn.* \mathbb{Q} -Lie alg $\mathfrak{g}_{\mathbb{Q}}$ is a \mathbb{Q} -form of \mathfrak{g} if $\mathfrak{g}_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathfrak{g}$.

Defn. $\mathfrak{g}_{\mathbb{Q}}$ is \mathbb{R} -universal: **Lem.** The following are equivalent: every \mathbb{R} -rep'n of $\mathfrak{g}_{\mathbb{Q}}$ has a \mathbb{Q} -form. • every irred \mathbb{Q} -rep of $\mathfrak{g}_{\mathbb{O}}$ remains irred over \mathbb{R} • $\otimes_{\mathbb{Q}} \mathbb{R}: \{\mathbb{Q}\text{-}rep \text{ ins of } \mathfrak{g}_{\mathbb{Q}}\} \to \{\mathbb{R}\text{-}rep \text{ ins of } \mathfrak{g}\}$ • $\rho: \mathfrak{g}_{\mathbb{O}} \to \mathfrak{gl}(n, \mathbb{R})$ $\Rightarrow \rho(\mathfrak{g}_{\mathbb{O}}) \subset \mathfrak{gl}(n, \mathbb{Q})$ after a change of basis in \mathbb{R}^n . is an isomorphism of categories • every \mathbb{R} -rep'n of $\mathfrak{g}_{\mathbb{Q}}$ has a \mathbb{Q} -form **Ques.** Does \mathfrak{g} have an \mathbb{R} -universal \mathbb{Q} -form? (*i.e.*, $\otimes_{\mathbb{O}}\mathbb{R}$ is onto) • $\rho: \mathfrak{g}_{\mathbb{O}} \to \mathfrak{gl}(n, \mathbb{R}) \Rightarrow \rho(\mathfrak{g}_{\mathbb{O}}) \subset \mathfrak{gl}(n, \mathbb{Q})$ after a change of basis **Ques.** Is every \mathbb{Q} -form \mathbb{R} -universal? • \forall irred \mathbb{Q} -rep'n of $\mathfrak{g}_{\mathbb{O}}$, $\operatorname{End}_{\mathfrak{g}_{\mathbb{O}}}(V) \otimes_{\mathbb{O}} \mathbb{R}$ is a division algebra. **Ques.** Which \mathbb{Q} -forms are \mathbb{R} -universal? *Rem.* W_{λ} has a Q-form if $\lambda \in \langle \text{roots} \rangle_{\mathbb{Z}}$ Last one is still open — I plan to work on it. and $\mathfrak{g}_{\mathbb{O}}$ splits over a quadratic ext'n of \mathbb{Q} . (Same proof as for \mathbb{C}/\mathbb{R} .)

Geometric motivation. **Thm** (Malcev). N = simply conn nilp Lie qrp. $(\Gamma \ discrete \ , \ N/\Gamma \ cpct)$ N has a lattice subgrp $\Leftrightarrow \mathfrak{n} has \ a \mathbb{Q}$ -form. *Proof* (Pink-Prasad). Easiest case: N is 2-step nilpotent (N/Z(N) abel). Construction. Given • \mathbb{R} -subspace $Z \subset \mathfrak{so}(n)$, • inner product on $\mathfrak{so}(n)$: $\langle z_1 \mid z_2 \rangle = -\operatorname{trace}(z_1 z_2).$ Let $\mathfrak{n} = \mathbb{R}^n \oplus Z$, with $Z \subset \mathfrak{z}(\mathfrak{n})$: • $[x, y] \in Z$, defined by $\langle [x, y] | z \rangle = z(x) \cdot y$. \mathfrak{n} has a \mathbb{Q} -form $\Leftrightarrow \exists \text{ bases } x_1, \cdots, x_n \text{ of } \mathbb{R}^n, z_1, \ldots, z_p \text{ of } Z,$ $z_i(x_i) \cdot x_k \in \mathbb{Q}.$ I.e., $z_i \in \mathfrak{gl}(n, \mathbb{Q})$ — exactly our question. ¿More on this tomorrow in Pat Eberlein's talk?

Ques. Is every Q-form R-universal?
Prop. Every Q-form of g is R-universal if g = sp(n) or so(8n ± 3) or any exceptional, except perhaps E₆.
Note. Although not obvious, every Q-form of sp(n) or of so(2n + 1) splits over some quadratic extension of Q.
Complement. There exists a Q-form of g that

is not R-universal, and
splits over some quadratic extension of Q

⇔ either

g ≅ su(2n), with 2n ≥ 4, or
g ≅ so(n), with n ≠ ±3 (mod 8).

Ques. Does \mathfrak{g} have an \mathbb{R} -universal \mathbb{Q} -form? **Thm** (Raghunathan, Eberlein, Pink-Prasad). Yes, the "standard" \mathbb{O} -form is \mathbb{R} -universal: $\mathfrak{g}_{\mathbb{O}} = \langle x_{\alpha} - x_{-\alpha}, i(x_{\alpha} + x_{-\alpha}), ih_{\alpha}^* \rangle.$ • V =irred \mathbb{Q} -rep'n of $\mathfrak{g}_{\mathbb{Q}}$. • $D = \operatorname{End}_{\mathfrak{g}_{\mathbb{O}}}(V) = \operatorname{division} \operatorname{algebra}$ $\mathfrak{g}_{\mathbb{Q}}$ splits over $\mathbb{Q}(i)$ (bcs $\mathfrak{g}_{\mathbb{Q}(i)} \supset$ Chev. basis) $\Rightarrow D$ splits over $\mathbb{Q}(i)$ (i.e., $D \otimes_{\mathbb{Q}} \mathbb{Q}(i) \cong \operatorname{Mat}_{2 \times 2}(\mathbb{Q}(i))$ and D is a quaternion algebra (deg. 2) $\mathfrak{g}_{\mathbb{Q}}$ is (quasi-)split over \mathbb{Q}_p (for all $p \neq 2$) $\Rightarrow D$ splits over \mathbb{Q}_n V is reducible over $\mathbb{R} \implies D$ splits over \mathbb{R} $\Rightarrow D$ splits at *all* places $\Rightarrow D$ splits over \mathbb{Q} . $\rightarrow \leftarrow (D = \text{division algebra})$

Proof that every \mathbb{Q} -form of $\mathfrak{sp}(n)$ is \mathbb{R} -universal. Spse \exists irred \mathbb{Q} -rep'n V of $\mathfrak{g}_{\mathbb{O}}$, s.t. $V \otimes_{\mathbb{O}} \mathbb{R}$ is red: $V_{\mathbb{R}} = X \oplus Y.$ Then $X \otimes_{\mathbb{R}} \mathbb{C}$ and $Y \otimes_{\mathbb{R}} \mathbb{C}$ are irred (bcs $\mathfrak{g}_{\mathbb{O}}$ splits over quadratic extension). Let λ = highest weight of $X_{\mathbb{C}}$ $=\sum m_j \cdot \alpha_j$ (lin comb of simple roots). Fundamental weights of $\mathfrak{sp}(n)$ (type C_n): $\lambda_{\ell} = \alpha_1 + 2\alpha_2 + \dots + (\ell - 1)\alpha_{\ell - 1}$ $+\ell\alpha_{\ell}+\ell\alpha_{\ell+1}+\cdots+\ell\alpha_{n-1}+\frac{\ell}{2}\alpha_n.$ $\Rightarrow m_1, m_2, \ldots, m_{n-1} \in \mathbb{Z}.$ $X_{\mathbb{C}}$ has \mathbb{R} -form (i.e., X) $\Rightarrow \sum m_j \in \mathbb{Z}$ [Tits] $\Rightarrow m_n \in \mathbb{Z}$ $\Rightarrow \lambda \in \mathbb{Z}$ -span(roots) $\Rightarrow X_{\mathbb{C}}$ has a Q-form (as for \mathbb{C}/\mathbb{R}). $V \otimes_{\mathbb{O}} \mathbb{R} = X \oplus Y \cong (X_{\mathbb{O}} \oplus Y_{\mathbb{O}}) \otimes_{\mathbb{O}} \mathbb{R}$ $\Rightarrow V \cong X_{\mathbb{O}} \oplus Y_{\mathbb{O}}$ is reducible. $\rightarrow \leftarrow$

References

P. Eberlein: Rational approximation in compact Lie groups and their Lie algebras (preprint, 2000).

J. E. Humphreys: Introduction to Lie Algebras and Representation Theory, 3rd printing. Springer, New York, 1972, 1980.

D. Morris: Real representations of semisimple Lie algebras have Q-forms, to appear in S. G. Dani and G. Prasad, eds.: proceedings of the conference Algebraic Groups and Arithmetic (Mumbai, India, 17-22 December 2001) in honor of M. S. Raghunathan's 60th birthday.

D. Morris: *Introduction to Arithmetic Groups*, in preparation. (Available from author's web page.)

V. Platonov and A. Rapinchuk: *Algebraic Groups and Number Theory*, Academic Press, Boston, 1994.

M. S. Raghunathan: Arithmetic lattices in semisimple groups, *Proc. Indian Acad. Sci. (Math. Sci.)* 91 (1982) 133–138.

J. Tits: Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971) 196–220.

