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Abstract. Suppose {A1, . . . , A�} is a basis (over R) of
a Lie algebra g of m × m matrices. If all the entries of
each matrix A1, . . . , A� are rational, then it is easy to see
that the corresponding structure constants of g are ratio-

nal; that is, [Ai, Aj ] =
∑

k

αk
ijAk, with αk

ij ∈ Q. The

converse is not usually true, but it does hold (after chang-
ing to a different basis of Rm) if g is isomorphic to sp(n),
for some n.

For Lie algebras other than sp(n), it would be interest-
ing to understand which choices of the structure constants

αk
ij force A1, . . . , A� to be (similar to) rational matrices.

This is relevant to the study of lattices in certain 2-step
nilpotent Lie groups.

Eg. f(x) = x2 + 1
• is irreducible over R (can’t be factored)
• is reducible over C (can be factored)

f(x) = (x− i)(x+ i)

Analogue in representation theory.
(All rep’ns are finite dimensional.)

Eg. G = SO(2) =
{[

cos θ sin θ
− sin θ cos θ

]}

has obvious representation on R2.
• This is irreducible. (No line is inv’t.)
• Complexification is reducible.

R2 ⊗R C ∼= C2

{(z, iz)} is an invariant subspace:[
cos θ sin θ
− sin θ cos θ

] [
z
iz

]
=

[
(cos θ)z + (sin θ)(iz)

(− sin θ)z + (cos θ)(iz)

]

=
[

(cos θ + i sin θ)z
i(cos θ + i sin θ)z

]
=

[
z′

iz′

]

We consider G = simple group.

Prop. G = SL(n,R) (or any R-split group)
⇒ every irred R-rep’n of G remains irred over C.

Proof. Show every C-rep’n W of G has a R-form.
• A = {diagonal matrices}
• λ = highest weight of W (w.r.t. A)

Every root of gC is R-valued on A (A is R-split)
⇒ λ(A) ⊂ R

⇒ we can form real highest-weight module V
⇒W = V ⊗R C.

At opposite extreme, assume G is compact.
E.g., G = SO(n).

Lem. The following are equivalent:
a) every irred R-rep’n of G remains irred over C

b) ⊗RC: {R-rep’ns of G} → {C-rep’ns of G}
is an isomorphism of categories

c) every C-rep’n of G has a R-form
(i.e., ⊗RC is onto)

d) ρ:G→ GL(n,C)⇒ ρ(G) ⊂ GL(n,R)
after a change of basis

e) ∀ irred R-rep’n of G, EndG(V ) ∼= R

Proof. (a⇒ c): WR ⊗R C is reducible:
WR = V1⊕V2 = V1⊕ iV1, so W = V1⊗R C.

(a⇔ e): Schur’s Lemma.
V irred/R ⇒ EndG(V ) = div’n alg = R, C, or H

⇒ EndG(VC) = EndG(V )⊗R C

∼= C, C⊕ C, or Mat2×2(C).
Only C is a division alg: VC irred⇔ EndG(V ) = R

(b⇔ c): ⊗RC is always one-to-one.
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Assume G is compact. E.g., G = SO(n).

Lem. W has R-form ⇔ ∃ G-inv conj τ :W →W .

Cor. If W has a R-form, then W ∼=W .

Defn. W = same set of vectors as W ,
but different scalar multiplication: α ∗ v = αv.

Rem. For W = Cn, ρ(G) ⊂ GL(n,R),
ρ(g) = ρ(g) (conjugate the matrix entries)

Proof of Cor. τ :W →W is isomorphism.

Lem. −(highest weight of W ) is a weight of W .

Proof. highest wt of W is a wt of W .

t = maximal torus of g

⇒ λ(t) ⊂ iR (bcs g is cpct)
⇒ λ(t) = λ(t) = −λ(t).

Lem. W has R-form⇔ ∃ G-inv conj τ :W →W .
• τ is conjugate-linear

τ(α1 w1+α2 w2) = α1 τ(w1)+α2 τ(w2).
• τ2 = Id.
• τ(gw) = g τ(w).

Proof. (⇒) Wolog W = Cn, ρ(G) ⊂ GL(n,R).
gw = g w = g w ⇒ define τ(w) = w.

(⇐) (τ2 − 1) = 0 ⇒ eigenvalues = ±1.
V+ = +1-eigenspace, V− = −1-eigenspace

W = V+⊕V− = V+⊕iV+ ⇒W = V+⊗R C.

Assume G is compact. E.g., G = SO(n).

Lem. If W has a R-form, then W ∼=W .

Lem. −(highest weight of W ) is a weight of W .

Rem. Wλ has a R-form
⇒ −λ is a wt of Wλ (lowest weight)
⇒ w0(λ) = −λ (w0 = long el’t Weyl grp)

Cor. If every C-rep’n of G has a R-form,
then w0(λ) = −λ, ∀λ

(⇔ each g ∈ G is conj to its inverse g−1).

Eg. ∃ C-rep’n of SU(n) with no R-form (n > 2).

ω1

ω2

. . .


 �∼




1/ω1

1/ω2

. . .




Rem. w0 = −Id except: type An, Dodd, E6.
(w0 is the “opposition involution.”)

Prop. Every C-rep’n of G has a R-form if
w0(λ) = −λ, ∀λ and G is adjoint.

Proof. We have a representation of gC on Cn.
• Let gS ⊂ gC be a split R-form,
• σG = conjugation on gC corresp to g,
• σS = conjugation on gC corresp to gS .

Wolog ρ(gS) ⊂ gl(n,R), so g w = σS(g) · w.
σG ◦ σS is C-linear auto of gC

⇒ σG ◦ σS = Adga, ∃a ∈ GC (outer aut??)

Define τ : Cn → Cn by τ(w) = a · w.
• τ(gw) = a σS(g)w = σG(g) aw = g τ(w)
• τ is conjugate-linear.
• τ2(w) = a·τ(w) = a·a · w = a·σS(a)·w = w.

Id = (σG)2 = Adg

(
a · σS(a)

)
⇒ a · σS(a) ∈ Z(G) = {e}.

Note. Proof shows Wλ has R-form if
w0(λ) = −λ and λ ∈ 〈roots〉Z (Z-span).
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Prop (Tits). Assume w0(λ) = −λ.
Write λ =

∑
mα ·α, linear comb of simple roots.

•
∑
mα ∈

1
2

Z (2λ ∈ 〈roots〉 ⇒ mα ∈
1
2

Z).

• Wλ has a R-form iff
∑
mα ∈ Z.

Eg. Type Bn SO(2n+ 1).
λ� = α1 + 2α2 + · · ·+ ("− 1)α�−1

+ " (α� + · · ·+ αn) (" < n)

λn =
1
2
(α1 + 2α2 + · · ·+ nαn)

λn has a R-form ⇔ n ≡ 0, 3 (mod 4)
⇔ every C-rep’n of SO(2n+ 1) has a R-form.

Eg. Type Cn cpct symplectic group Sp(2n).
λ� = α1 + 2α2 + · · ·+ ("− 1)α�−1

+ "α� + · · ·+ "αn−1 +
"

2
αn

∃ R-form ⇔ " even.
Not all C-rep’ns have a R-form.

G = compact, simple Lie group.

Tits: Every C-rep’n of g has a R-form⇔ 〈××××〉.

Eg. f(x) = x2 + 1
• is irreducible over R

• but reducible over C

Eg. f(x) = x2 − 3
• is irreducible over Q

• but reducible over R (x−
√

3)(x+
√

3)

Study the field extension R/Q, instead of C/R.

Choose basis E1, . . . , En of g,
such that the structure constants belong to Q,

i.e., [Ek, E�] =
∑
αj

k,�Ej with αj
k,� ∈ Q.

Then Q-span(E1, . . . , En) is a Lie algebra over Q;
it is a Q-form of g.

∃ Q-form of g: 〈xα − x−α, i(xα + x−α), ih∗α〉.

Defn. Q-Lie alg gQ is a Q-form of g if gQ⊗QR ∼= g.

Defn. gQ is R-universal:
every R-rep’n of gQ has a Q-form.
• ρ: gQ → gl(n,R) ⇒ ρ(gQ) ⊂ gl(n,Q)

after a change of basis in Rn.

Ques. Does g have an R-universal Q-form?

Ques. Is every Q-form R-universal?

Ques. Which Q-forms are R-universal?

Last one is still open — I plan to work on it.

Lem. The following are equivalent:
• every irred Q-rep of gQ remains irred over R

• ⊗QR: {Q-rep’ns of gQ} → {R-rep’ns of g}
is an isomorphism of categories

• every R-rep’n of gQ has a Q-form
(i.e., ⊗QR is onto)

• ρ: gQ → gl(n,R)⇒ ρ(gQ) ⊂ gl(n,Q)
after a change of basis

• ∀ irred Q-rep’n of gQ, EndgQ
(V )⊗Q R

is a division algebra.

Rem. Wλ has a Q-form if λ ∈ 〈roots〉Z
and gQ splits over a quadratic ext’n of Q.

(Same proof as for C/R.)
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Geometric motivation.

Thm (Malcev). N = simply conn nilp Lie grp.
N has a lattice subgrp (Γ discrete , N/Γ cpct)

⇔ n has a Q-form.

Easiest case: N is 2-step nilpotent (N/Z(N) abel).

Construction. Given
• R-subspace Z ⊂ so(n),
• inner product on so(n):

〈z1 | z2〉 = −trace(z1z2).
Let n = Rn ⊕ Z, with Z ⊂ z(n):
• [x, y] ∈ Z, defined by 〈[x, y] | z〉 = z(x) · y.

n has a Q-form
⇔ ∃ bases x1, · · · , xn of Rn, z1, . . . , zp of Z,

zi(xj) · xk ∈ Q.
I.e., zi ∈ gl(n,Q) — exactly our question.

¿More on this tomorrow in Pat Eberlein’s talk?

Ques. Does g have an R-universal Q-form?

Thm (Raghunathan, Eberlein, Pink-Prasad).
Yes, the “standard” Q-form is R-universal:

gQ = 〈xα − x−α, i(xα + x−α), ih∗α〉.

Proof (Pink-Prasad).
• V = irred Q-rep’n of gQ.
• D = EndgQ

(V ) = division algebra

gQ splits over Q(i) (bcs gQ(i) ⊃ Chev. basis)
⇒ D splits over Q(i)

(i.e., D ⊗Q Q(i) ∼= Mat2×2

(
Q(i)

)
and D is a quaternion algebra (deg. 2)

gQ is (quasi-)split over Qp (for all p �= 2)
⇒ D splits over Qp

V is reducible over R ⇒ D splits over R

⇒ D splits at all places ⇒ D splits over Q.
→← (D = division algebra)

Ques. Is every Q-form R-universal?

Prop. Every Q-form of g is R-universal if
g = sp(n) or so(8n± 3)
or any exceptional, except perhaps E6.

Note. Although not obvious, every Q-form of
sp(n) or of so(2n + 1) splits over some quadratic
extension of Q.

Complement. There exists a Q-form of g that
• is not R-universal, and
• splits over some quadratic extension of Q

⇔ either
• g ∼= su(2n), with 2n ≥ 4, or
• g ∼= so(n), with n �≡ ±3 (mod 8).

Proof that every Q-form of sp(n) is R-universal.

Spse ∃ irred Q-rep’n V of gQ, s.t. V ⊗Q R is red:
VR = X ⊕ Y .

Then X ⊗R C and Y ⊗R C are irred
(bcs gQ splits over quadratic extension).

Let λ = highest weight of XC

=
∑
mj ·αj (lin comb of simple roots).

Fundamental weights of sp(n) (type Cn):
λ� = α1 + 2α2 + · · ·+ ("− 1)α�−1

+ "α� + "α�+1 + · · ·+ "αn−1 +
"

2
αn.

⇒ m1,m2, . . . ,mn−1 ∈ Z.

XC has R-form (i.e., X) ⇒
∑
mj ∈ Z [Tits]

⇒ mn ∈ Z

⇒ λ ∈ Z-span(roots)
⇒ XC has a Q-form (as for C/R).

V ⊗Q R = X ⊕ Y ∼= (XQ ⊕ YQ)⊗Q R

⇒ V ∼= XQ ⊕ YQ is reducible. →←
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J. Tits: Représentations linéaires irréductibles d’un groupe
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