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Lecture 2: Proof for SL ,Z[(x]

using bounded generation

Recall

I = large arithmeti@roup
= SL(3,7Z), SL 2,Z[«x] , etc.
« = irrational, algebraic, real

[ does not act on R.  (faithfully — no kernel)
A faithful homomorphism ¢: T — Homeo, (R)

Proposition (Witte [1994])

[ doesnotacton R if [ = SL(3,2).

Theorem (Lifschitz-Morris [2004])
L] L]
I doesnotacton R if I =SL 2,7Z[«] .

Theorem (Lifschitz-Morris [2004])
[ doesnotacton R if I =SL 2,Z[«] .

Proof combines bdd generation@Ad peg orbjts; —
10

Unipotent subgroups: U = Lx y-

* 1

Theorem (Carter-Keller-Paige, Lifschitz-Morris)
@ U and V boundedly generate I' (up to finite index).
o [ actson R = U-orbits (and V-orbits) are bdd.

Bounded generation by unip subgrps

Note: Invertible matrix ~ Id by row operations.

1
Key fact: g € SL 2,7) ~ Id by integer (Z) row ops.

Example

13 31 3 7 37
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. UandV generate SL(2,7).

But # steps is not bounded: .
U and V do not boundedly generate SL 2,7).

1
Key fact: g € SL 2,7) ~ Id by integer (Z) row ops,
but # steps is not bounded.

Remark: In SL(3,Z), # steps is bounded [Carter-Keller, 1983].

Theorem (Liehl [1984], Carter-Keller-Paige [19957])

For Z[ x| row operﬁions, ﬁteps is bounded.
Eln,jg € SL 2,7[«x] , g = ULV URY2" * - YmUn.
le., U aﬁl \%4 bO@dEdl)Lgen r =§L 2,7[x] .

So SL 2,Z[x] =UVUV ---UV.

Theorem (Liehl [1984])

SL , Z[1/p] ddly gen’d by elem mats.
l.e., T ~ Id by Z[1/p] col ops, # steps is bdd.

Easy proof
Assume Artin’s Conjecture:
Vv #+ +1, perfect square,
3 oo primes ¢, s.t. v is primitive root modulo g:
{r, 72,73, ...} mod q = {1,2,3,...,q -1}
Assume 3q in every arith progression {a + kb}.

dg=a+kb, p isa primitive root modulo g.

Theorem (Liehl [1984])

SL , Z[1/p] ddly gen’d by elem mats.
l.e., T ~ Id by Z[1/p] col ops, # steps is bdd.

ab . . .
c d q = a + kb prime, p is prim root
1 1
a b 0_ R ,
Wlﬁ*l:lp b (mod q); p* =b+k'q
L
. 1P p‘q unit: can add anything to g
*
9 * o o 1
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@ Bdd generation: T = UVUV - - - UV.
@ Bdd orbits: U-orbits and V-orbits are bounded.

Corollary

¢: T - Homeo,.(R) = every l-orbit on R is bdd
= [ has a fixed point.

Corollary
[ cannot act on R.

Proof. Spse 3 nontrivial action.
It has fixed points:

Remove them: - = = — =
Take a connected component: I

I acts on open interval (= R) with no fixed pt. — <

Bounded orbits

Theorem (Lifschitz-Morris [2004])
| | —_—
Ir=SL 2,Z[1/p] actson R = every U-orbit bdd.
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Assume U-orbit and V-orbit of x not bdd above.
Assume #- fixes x.

@ Wolog < ). O O
@ Then " E‘x) é-p—" v(x) .
@ LHS = " I:E(x) = (#"up ) (x) — ®(x) — co.

@ RHS=p" v(x) = ("vp ") (x) — 0(x) < .
- O

(- does have fixed pts, so not an issue.)




Other arithmetic groups of higher rank

Suppose 1 C To.
@ If I, acts on R, then I, acts on R.
@ If I'; does not act on R, then ', does not act on R.

Our methods require ' to have a unipotent subgrp.
Such arithmetic groups are called noncocompact.

Theorem (Chernousov-Lifschitz-Morris [2008])

Spselisan ocompact arith group of higher rank.
ThenT O SL 2,7Z[«]
or noncocpct arith grp in SL(3, R) or SL(3, C).

Open Problem
Show noncocpct arith grps in SL(3,R) and SL(3, C)
cannot act on R.

Conjecture (Rapinchuk [~1990])

These arith grps are boundedly generated by unips.

Rapinchuk Conjecture implies no action on R
if [ noncocompact of higher rank.

Cocompact case will require new ideas.

Open Problem

Find cocompact arithmetic group I, such that
finite-index subgroups of I do not act on R.

Xercises

1) Assume I' boundedly generated (by cyclic subgrps).
(l.e.,T = H1H> - - - Hy with H; cyclic.)

If I acts by isometries on metric space X,
and every cyclic subgroup has a bdd orbit on X,
then every l-orbit on X is bounded.
2) SL(n,Z) bdd gen by unips
= SL(n + 1,7Z) bdd gen by unips (ifn > 2).
3) T bdd gen (by cyclic subgrps) )
< finite-index subgroup I' bdd gen.
4) (harder) Free group Fg not bdd gen (by cyclic subgrps).
5) U and V do not bddly gen SL(2,7Z). (Use prev exer.)

Dptional exercises

6) (harder) ﬁsume r b@ gen (by cyclic subgrps).
Show g"|g €Tl hasfinite index inT (vnez*).
7) Assume:
@ I and I, are arith subgrps of G; and Gy, resp.
@ (G; and G; are simple Lie grps of higher real rank.
@ I, is cocompact, but ', is not cocompact.
Use the Margulis Superrigidity Theorem to
show I'; is not isomorphic to a subgroup of I';.
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