

Other arithmetic groups of higher rank

Proposition

- Suppose $\Gamma_1 \subset \Gamma_2$.
 - If Γ_2 acts on \mathbb{R} , then Γ_1 acts on \mathbb{R} .
 - If Γ_1 does not act on \mathbb{R} , then Γ_2 does not act on \mathbb{R} .

Our methods require Γ to have a unipotent subgrp. Such arithmetic groups are called *noncocompact*.

Theorem (Chernousov-Lifschitz-Morris [2008])

Spse Γ is a noncocompact arith group of higher rank. Then $\Gamma \supset SL(2, \mathbb{Z}[\alpha])$ or noncocpct arith grp in $SL(3, \mathbb{R})$ or $SL(3, \mathbb{C})$.

Optional exercises

- 6) (harder) Assume Γ bdd gen (by cyclic subgrps).
- Show $\langle g^n | g \in \Gamma \rangle$ has finite index in $\Gamma (\forall n \in \mathbb{Z}^+)$. 7) Assume:
 - Γ_1 and Γ_2 are arith subgrps of G_1 and G_2 , resp.
 - G_1 and G_2 are simple Lie grps of higher real rank.
 - Γ_1 is cocompact, but Γ_2 is *not* cocompact.

Use the Margulis Superrigidity Theorem to show Γ_2 is *not* isomorphic to a subgroup of Γ_1 .

Open Problem

Show noncocpct arith grps in $SL(3, \mathbb{R})$ and $SL(3, \mathbb{C})$ cannot act on \mathbb{R} .

Conjecture (Rapinchuk [~1990])

These arith grps are boundedly generated by unips.

Rapinchuk Conjecture implies no action on \mathbb{R} if Γ noncocompact of higher rank.

Cocompact case will require new ideas.

Open Problem

Find cocompact arithmetic group Γ , such that finite-index subgroups of Γ do not act on \mathbb{R} .

Related reading

- D. W. Morris: Can lattices in SL(n, ℝ) act on the circle?, in *Geometry, Rigidity, and Group Actions*, University of Chicago Press, Chicago, 2011. http://arxiv.org/abs/0811.0051
- L.Lifschitz and D. Witte: Isotropic nonarchimedean S-arithmetic groups are not left orderable, C. R. Math. Acad. Sci. Paris 339 (2004), no. 6, 417-420. http://arxiv.org/abs/math/0405536

Exercises

1) Assume Γ boundedly generated (by cyclic subgrps). (I.e., $\Gamma = H_1 H_2 \cdots H_n$ with H_i cyclic.)

If Γ acts by *isometries* on metric space *X*, and every cyclic subgroup has a bdd orbit on *X*, then every Γ -orbit on *X* is bounded.

- 2) SL (n, \mathbb{Z}) bdd gen by unips \implies SL $(n + 1, \mathbb{Z})$ bdd gen by unips (if $n \ge 2$).
- 3) Γ bdd gen (by cyclic subgrps)
 ⇔ finite-index subgroup Γ bdd gen.
- 4) (harder) Free group F_2 *not* bdd gen (by cyclic subgrps).
- 5) \overline{U} and \underline{V} do not bddly gen SL(2, \mathbb{Z}). (Use prev exer.)

Further reading

- D.W.Morris: Bounded generation (unpublished). http://people.uleth.ca/~dave.morris/ banff-rigidity/morris-bddgen.pdf
- D. W. Morris: Bounded generation of SL(n, A) (after D. Carter, G. Keller and E. Paige), New York J. Math. 13 (2007) 383-421. http: //nyjm.albany.edu/j/2007/13-17.html
- L. Lifschitz and D. W. Morris: Bounded generation and lattices that cannot act on the line, *Pure and Applied Mathematics Quarterly* 4 (2008), no. 1, part 2, 99–126. http://arxiv.org/abs/math/0604612

- V. Chernousov, L. Lifschitz, and D. W. Morris: Almost-minimal nonuniform lattices of higher rank, *Michigan Mathematical Journal* 56, no. 2, (2008), 453-478. http://arxiv.org/abs/0705.4330
- A. Ondrus: Minimal anisotropic groups of higher real rank, *Michigan Math. J.* 60 (2011), no. 2, 355–397.