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Abstract

If X is any connected Cayley graph on any finite
abelian group, we determine precisely which flows
on X can be written as a sum of hamiltonian cy-
cles. In particular, if the degree of X is at least 5,
and X has an even number of vertices, then it is
precisely the even flows, that is, the flows f , such
that

∑
α∈E(X) f(α) is divisible by 2. On the other

hand, there are infinitely many examples of de-
gree 4 in which not all even flows can be written
as a sum of hamiltonian cycles. Analogous results
were already known 10 years ago, from work of
Brian Alspach, Stephen Locke, and Dave Witte,
for the case where X is cubic, or has an odd num-
ber of vertices.

Any cycle in a graph X,
when given an orientation

determines a flow on X.

As flows, cycles can be added.

2+ =

Easy. Every flow on X is a sum of cycles.

Ques (Alspach).
Which flows are a sum of hamiltonian cycles?

For X = cartesian product of cycles.

Ques (Alspach).
Which flows are a sum of hamiltonian cycles?

For X = cartesian product of cycles.

Eg. C4 � C3

In general, Cn1 � · · · � Cnr

∼= Cay
(
Zn1 ⊕ · · · ⊕ Znr ; {e1, . . . , er}

)

Alspach actually asked the question for
all (connected) Cayley graphs on abelian groups.
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Ques. Which flows are a sum of ham cycles H?

Constraint. |X| even
⇒ H has even length (even # edges)
⇒ H is an even flow

i.e.,
∑

e∈E(X)

f(e) is even.

⇒ sum of ham cycs is always an even flow.

Ans (Alspach-Locke=Witte, Morris2-Moulton).
• if |X| is odd: all flows unless X ∼= C3�C3.
• if |X| is even: all even flows unless

◦ X is cubic or
◦ deg X = 4 and

X ∼= Cay(Zn;±1,±2)
or

|X| ≡ 2 (mod 4)
and X is not bipartite.

Cay(Zn;±1,±2) is the square of a cycle.

Eg. . X = C3 � C3

Put weight 1 on the edges of two parallel cycles
with opposite orientation.

Weight 0 on all the other edges.

Defn. The weight of a flow f is
the weighted sum of its edge-flows:

wt(f) =
∑

e∈E(X)

w(e) f(e).

Eg. wt(4-cycle) = ±1 or ±2.

C3 � C3 weighting

Eg. wt(4-cycle) = ±1 or ±2.

Eg. A hamiltonian cycle.

wt(H) = (−1)+(−1)+(−1) = −3 ≡ 0 (mod 3).

Any hamiltonian cycle looks similar to this:
∀ ham cyc H, wt(H) ≡ 0 (mod 3).

f = sum of ham cycs
⇒ wt(f) ≡ 0 (mod 3).

Converse is true.
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Eg. For X = C3 � C3:
f = sum of ham cycs ⇒ wt(f) ≡ 0 (mod 3)

and converse is true.

Eg. X is cubic:
• prism (over a cycle)
• Möbius ladder

There are very few hamiltonian cycles.

Easy to find weighting of edges, such that
f = sum of ham cycs ⇒ wt(f) ≡ 0 (mod k)

and converse is true.

Example. X = Cay(Zn;±1,±2)

Same story.

Remaining exception:
• deg X = 4,
• |X| ≡ 2 (mod 4), and
• X is not bipartite.

Main example. X = Cm � Cn

• m odd
• n ≡ 2 (mod 4).

Give the Cm-cycles alternating orientations
(with weight 1 on each edge)

and put weight 0 on each edge of the Cn-cycles.

Eg. wt(4-cycle) = 1 + 0 + 1 + 0 = ±2.

Eg. wt(4-cycle) = ±2.

Exer. wt(even flow) is even.

Eg. Hamiltonian cycle.

wt(H) = 2 − 1 + 1 − 1 − 1 − 2 − 1
− 2 + 1 − 1 + 2 + 1 + 6 + 4

= 8 ≡ 0 (mod 4).

Thm. wt(sum of ham cycs) ≡ 0 (mod 4)
and converse is true.

Main example. X = Cm � Cn

• m odd
• n ≡ 2 (mod 4).

Thm. wt(ham cyc) ≡ 0 (mod 4).

But there are many hamiltonian cycles;
not obvious that wt(H) is always divisible by 4.

Use a more geometric defn of wt(even cycle).

Define “imbalance” of C:
• 2-color complement X � C.
• imb(C) = (#black) − (#white) (mod 4).

Key fact. wt(C) ≡ len(C)+ imb(C)− 2 (mod 4)

Proof of Thm.
• len(H) = |X| ≡ 2 (mod 4).
• imb(H) = 0 (#black = 0 = #white).

⇒ wt(H) ≡ 2 + 0 − 2 = 0.
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Definition of imb(C).

X is not bipartite, but
X � C can be 2-colored.

Always shift the color
scheme when C is crossed.

Key fact. wt(C) ≡ len(C)+ imb(C)− 2 (mod 4)

Defn. wli(C) := wt(C) + len(C) + imb(C) + 2.

Want to show wli(C) ≡ 0 (mod 4).

Lem.
• wli

( )
≡ wli

( )
.

• wli
( )

≡ wli
( )

.

Lem. C increasing
⇒ imb(C) ≡ 2 × (#edges in even rows).

Exer. For si = i + k1 + · · · ki (1 ≤ i ≤ 2n),
{ i | si odd } − { i | si even } ≡ 2

∑
k2i (mod 4).

Open problems.

Problem. Generalize to Cayley graphs on some
nonabelian groups.

Seems hopelessly difficult, even for dihedral grps.

Defn. D2n = 〈 t, f | tn = e, f2 = e, ftf = t−1 〉.

Rem. Cay
(
D2n; {t, f}

)
has a hamiltonian cycle.

Thm (Alspach-Zhang).
Cay

(
D2n, {f, fta, ftb}

)
has a hamiltonian cycle.

Conj. Cay(D2n, S) has a ham cyc, for every S.

Problem (Alspach).
Show Cay(D2n, S) is ham connected if #S = 3.

(or hamiltonian laceable, if bipartite)

This would prove the preceding conjecture.

For abelian groups:

Conj (Alspach).
Cay(G;S) is hamiltonian decomposable

(i.e., edge-disjoint union of Ham cycles
[+ 1-factor?]).

Thm (Bermond-Favaron-Mahéo).
True if degree ≤ 5.
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