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Eg. G cpct ⇒ 1 ∈ L2(G)
⇒ L2(G) has an invariant vector
I.e., φ ≡ 1 ⇒ gφ = φ (gφ)(x) = φ(g−1x)

(and conversely)

Eg. G = R

L2(G) does not have an invariant vector
but it has almost invariant vectors

Let φn =
1
n

(
characteristic function of [0, n2]

)

0 n2

Note that φn is a unit vector.
For g ∈ [−n, n], we have

||gφn − φn||2 ≤
∫ n

−n

1
n2
dx+

∫ n2+n

n2−n

1
n2
dx =

4
n

For every compact K ⊂ G and every ε > 0,
∃φ ∈ L2(G)(1), ∀g ∈ K, ||gφ− φ|| < ε
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Defn. G amenable: L2(G) has alm inv vectors.

For every compact K ⊂ G and every ε > 0,
∃φ ∈ L2(G)(1), ∀g ∈ K, ||gφ− φ|| < ε

Prop. The following groups are amenable:

• abelian groups

• solvable groups

• compact groups

Prop. SL2(R) is not amenable

Cor. Noncpct semisimple Lie grp is not amenable

Cor. A connected Lie group G is amenable iff
G/RadG is compact.

Kazhdan’s property T : “opposite” of amenability
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Defn. G amenable: L2(G) has alm inv vectors.

Defn. G has Kazhdan’s property T :
no unitary rep of G has almost invariant vectors

(unless it has invariant vectors)

Prop. G has Kazhdan’s property
⇒ G is not amenable
(unless G is cpct)

Proof. Suppose G is amenable and Kazhdan.

G amenable ⇒ L2(G) has alm inv vectors,
so Kazhdan ⇒ L2(G) has inv vectors.

Therefore, G is compact.

Cor. Γ Kazhdan ⇒ Γ/[Γ,Γ] is cpct.

Proof. Being abelian, Γ/[Γ,Γ] is amenable.
Γ Kazhdan ⇒ Γ/[Γ,Γ] is also Kazhdan.

Eg. Free groups: neither Kazhdan nor amenable.
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Defn. G has Kazhdan’s property T :
no unitary rep of G has almost invariant vectors

(unless it has invariant vectors)

Thm (Kazhdan). G conn, simple, finite center.
R-rank(G) ≥ 2 ⇒ G has Kazhdan’s property.

(Proof next week.)

Prop (Kazhdan). G Kazhdan, Γ a lattice in G
⇒ Γ Kazhdan.

Cor (Kazhdan). Γ a lattice in G.
G conn, simple, finite center with R-rank(G) ≥ 2.

⇒ Γ is finitely generated
and Γ/[Γ,Γ] is finite.

Cor. SL2(R) not Kazhdan.

Proof. Surface grp Γ = 〈a, b, c, d | [a, b][c, d] = e〉.
Then Γ/[Γ,Γ] infinite, so Γ not Kazhdan.
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Cor. SL2(R) not Kazhdan.

Eg. PSL2(Z) = Z2 ∗ Z3 (free product)
SL2(Z) = Z4 ∗Z2 Z6 (free prod with amalg)

Prop (Watatani). Γ discrete, Kazhdan
⇒ Γ �= A ∗C B with A,B,C finite

“Kazhdan’s property T ⇒ Serre’s property (FA)”

Lem (Serre). Γ discrete, Kazhdan.
If Γ acts by isometries on Hilbert space H,
then Γ has a fixed point.
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Weak containment (Fell topology).

σ has alm inv vectors ⇔ 1 ≺ σ

Defn. (π, V ) is weakly contained in (σ,W ) if:
for every cpct set K in G, every ε > 0,
and all φ1, . . . , φn ∈ V(1),
∃ψ1, . . . , ψn ∈W(1), such that

|〈gψi, ψj〉 − 〈gφi, φj〉| < ε, ∀g ∈ K, ∀i, j.

Defn. G Kazhdan: ∀σ, 1 ≺ σ ⇒ 1 ≤ σ.

Neighborhood of (π, V ) in Ĝ: fix K, ε, φi’s
Let U = {(σ,W ) | ∃ψ1, . . . , ψn, such that · · ·}.

1 ≺ σ ⇔ every neighborhood of 1 contains σ
⇔ 1 is in the closure of {σ}.

So G Kazhdan iff ∀ rep σ, 1 ∈ σ ⇒ 1 ≤ σ.

This is equivalent to: 1 is isolated in Ĝ [Wang].
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Prop (Kazhdan). G Kazhdan, Γ a lattice in G
⇒ Γ Kazhdan.

Proof. Spse rep π of Γ has alm inv vectors.
Then π � 1, so

IndG
Γ (π) � IndG

Γ (1) = L2(G/Γ) ≥ 1.
Thus, Kazhdan implies IndG

Γ (π) ≥ 1.
So π ≥ 1.
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Prop. Γ discrete, Kazhdan ⇒ Γ finitely gen.

Proof. Let {Hn} = all fin gen subgrps of Γ, and
define π = L2(Γ/H1) ⊕ L2(Γ/H2) ⊕ · · ·

where (gφ)(xHn) = φ(g−1xHn).

Any cpct set K ⊂ Γ is finite, so ∃Hn ⊃ K.
Then K fixes the base point p in Γ/Hn,
so, for φ = δp ∈ L2(Γ/Hn) ⊂ π,
we have gφ = φ for all g ∈ K.
Thus, π has almost invariant vectors.
Therefore, π must have an invariant vector.

So some L2(Γ/Hn) has an invariant vector.
Since Γ is transitive on Γ/Hn,

an invariant function must be constant.
So a constant function is in L2(Γ/Hn),

which means Γ/Hn is finite.

Hn finitely generated ⇒ Γ finitely generated.
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