Introduction to Kazhdan's property T

Dave Witte

Department of Mathematics Oklahoma State University Stillwater, OK 74078 Eq. G cpct $\Rightarrow 1 \in L^2(G)$ $\Rightarrow L^2(G)$ has an invariant vector I.e., $\phi \equiv 1 \Rightarrow g\phi = \phi$ $(g\phi)(x) = \phi(g^{-1}x)$ (and conversely)

Note that ϕ_n is a unit vector. For $g \in [-n, n]$, we have $||g\phi_n - \phi_n||^2 \leq \int_{-n}^n \frac{1}{n^2} dx + \int_{n^2 - n}^{n^2 + n} \frac{1}{n^2} dx = \frac{4}{n}$ For every compact $K \subset G$ and every $\epsilon > 0$,

 $\exists \phi \in L^2(G)_{(1)}, \, \forall g \in K, \, ||g\phi - \phi|| < \epsilon$

Defn. G amenable: $L^2(G)$ has alm inv vectors.

For every compact $K \subset G$ and every $\epsilon > 0$, $\exists \phi \in L^2(G)_{(1)}, \forall g \in K, ||g\phi - \phi|| < \epsilon$

Prop. The following groups are amenable:

- abelian groups
- solvable groups
- compact groups

Prop. $SL_2(\mathbb{R})$ is not amenable

Cor. Noncpet semisimple Lie grp is not amenable

Cor. A connected Lie group G is amenable iff $G / \operatorname{Rad} G$ is compact.

Kazhdan's property T: "opposite" of amenability

Defn. G amenable: $L^2(G)$ has alm inv vectors. Defn. G has Kazhdan's property T: no unitary rep of G has almost invariant vectors (unless it has invariant vectors)

Prop. G has Kazhdan's property \Rightarrow G is not amenable (unless G is cpct)

Proof. Suppose G is amenable and Kazhdan.

G amenable $\Rightarrow L^2(G)$ has alm inv vectors, so Kazhdan $\Rightarrow L^2(G)$ has inv vectors.

Therefore, G is compact.

Cor. Γ Kazhdan $\Rightarrow \Gamma/[\Gamma, \Gamma]$ is cpct.

Proof. Being abelian, $\Gamma/[\Gamma, \Gamma]$ is amenable. Γ Kazhdan ⇒ $\Gamma/[\Gamma, \Gamma]$ is also Kazhdan. ■

Eg. Free groups: neither Kazhdan nor amenable.

Defn. G has **Kazhdan's property** T: no unitary rep of G has almost invariant vectors (unless it has invariant vectors)

Thm (Kazhdan). G conn, simple, finite center. \mathbb{R} -rank $(G) \ge 2 \implies G$ has Kazhdan's property.

(Proof next week.)

Prop (Kazhdan). G Kazhdan, Γ a lattice in G $\Rightarrow \Gamma$ Kazhdan.

Cor (Kazhdan). Γ a lattice in G. G conn, simple, finite center with \mathbb{R} -rank $(G) \geq 2$. $\Rightarrow \Gamma$ is finitely generated and $\Gamma/[\Gamma, \Gamma]$ is finite.

Cor. $SL_2(\mathbb{R})$ not Kazhdan.

Proof. Surface grp $\Gamma = \langle a, b, c, d \mid [a, b][c, d] = e \rangle$. Then $\Gamma/[\Gamma, \Gamma]$ infinite, so Γ not Kazhdan.

Cor. $SL_2(\mathbb{R})$ not Kazhdan.

Eq. $PSL_2(\mathbb{Z}) = \mathbb{Z}_2 * \mathbb{Z}_3$ (free product) $SL_2(\mathbb{Z}) = \mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$ (free prod with amalg) **Prop** (Watatani). Γ discrete, Kazhdan $\Rightarrow \Gamma \neq A *_C B$ with A, B, C finite

"Kazhdan's property $T \Rightarrow$ Serre's property (FA)" Lem (Serre). Γ discrete, Kazhdan. If Γ acts by isometries on Hilbert space H, then Γ has a fixed point.

Weak containment (Fell topology).

 σ has alm inv vectors $\Leftrightarrow 1 \prec \sigma$

Defn. (π, V) is weakly contained in (σ, W) if: for every cpct set K in G, every $\epsilon > 0$, and all $\phi_1, \ldots, \phi_n \in V_{(1)}$, $\exists \psi_1, \ldots, \psi_n \in W_{(1)}, \text{ such that}$ $|\langle g\psi_i, \psi_i \rangle - \langle g\phi_i, \phi_j \rangle| < \epsilon, \ \forall g \in K, \ \forall i, j.$ Defn. G Kazhdan: $\forall \sigma, 1 \prec \sigma \Rightarrow 1 \leq \sigma$. Neighborhood of (π, V) in \hat{G} : fix K, ϵ, ϕ_i 's Let $U = \{(\sigma, W) \mid \exists \psi_1, \ldots, \psi_n, \text{ such that } \cdots \}.$ $1 \prec \sigma \Leftrightarrow$ every neighborhood of 1 contains σ \Leftrightarrow 1 is in the closure of $\{\sigma\}$. So G Kazhdan iff \forall rep σ , $1 \in \overline{\sigma} \Rightarrow 1 \leq \sigma$.

This is equivalent to: 1 is isolated in \hat{G} [Wang].

Prop (Kazhdan). G Kazhdan, Γ a lattice in G $\Rightarrow \Gamma$ Kazhdan.

Proof. Specify rep π of Γ has alm invice vectors. Then $\pi \succ 1$, so $\operatorname{Ind}_{\Gamma}^{G}(\pi) \succ \operatorname{Ind}_{\Gamma}^{G}(1) = L^{2}(G/\Gamma) \geq 1.$

Thus, Kazhdan implies $\operatorname{Ind}_{\Gamma}^{G}(\pi) \geq 1$. So $\pi \geq 1$.

Prop. Γ discrete, Kazhdan $\Rightarrow \Gamma$ finitely gen.

Proof. Let $\{H_n\}$ = all fin gen subgrps of Γ , and define $\pi = L^2(\Gamma/H_1) \oplus L^2(\Gamma/H_2) \oplus \cdots$ where $(g\phi)(xH_n) = \phi(g^{-1}xH_n)$.

Any cpct set $K \subset \Gamma$ is finite, so $\exists H_n \supset K$. Then K fixes the base point p in Γ/H_n , so, for $\phi = \delta_p \in L^2(\Gamma/H_n) \subset \pi$, we have $g\phi = \phi$ for all $g \in K$. Thus, π has almost invariant vectors. Therefore, π must have an invariant vector. So some $L^2(\Gamma/H_n)$ has an invariant vector. Since Γ is transitive on Γ/H_n ,

an invariant function must be constant. So a constant function is in $L^2(\Gamma/H_n)$, which means Γ/H_n is finite.

 H_n finitely generated $\Rightarrow \Gamma$ finitely generated.

References

- D.A. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, *Func. Anal. Appl.* 1 (1967) 63–65.
- A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser, 1994 (Chapter 3).
- G.A. Margulis, *Discrete Subgroups of Semi*simple Lie Groups, Springer, 1991 (Chap. 3).
- J.–P. Serre, *Trees*, Springer, 1980.
- S. P. Wang, The dual space of semi-simple Lie groups, Amer. J. Math. 91 (1969) 921–937.
- R.J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, 1984 (Chap. 7).