Simple groups of real rank at least two have Kazhdan's property

Dave Witte

Department of Mathematics
Oklahoma State University
Stillwater, OK 74078

Let $G = \mathrm{SL}_3(\mathbb{R})$ (conn, simple, finite center, \mathbb{R} -rank $(G) \geq 2$)

Thm (Kazhdan). G has Kazhdan's property.

Rem. Sp(1, n) and F_4 are also Kazhdan. But SO(1, n) and SU(1, n) are not.

Rem. Semisimple groups: $G \times H$ is Kazhdan iff both G and H are.

Rem. $\mathrm{SL}_3(\mathbb{R}) \times \mathbb{R}^3$ is not Kazhdan, but $\mathrm{SL}_3(\mathbb{R}) \ltimes \mathbb{R}^3$ is Kazhdan.

Let $G = \mathrm{SL}_3(\mathbb{R})$

(conn, simple, finite center, \mathbb{R} -rank $(G) \geq 2$)

Thm (Kazhdan). G has Kazhdan's property.

Defn. G has Kazhdan's property T:

For every unitary rep'n σ of G,

$$1 \prec \sigma \Rightarrow 1 \leq \sigma$$
.

 $(\pi, V) \leq (\sigma, W)$:

for every orthonormal basis ϕ_1, ϕ_2, \ldots of V, there are orthonormal vectors ψ_1, ψ_2, \ldots in W, such that $\langle g\psi_i, \psi_j \rangle = \langle g\phi_i, \phi_j \rangle$, $\forall g \in G, \forall i, j$.

Defin. $(\pi, V) \prec (\sigma, W)$:

for every cpct set K in G, every $\epsilon > 0$, and for all orthonormal vectors ϕ_1, \ldots, ϕ_n in V, there are orthonormal vectors ψ_1, \ldots, ψ_n in W, such that

$$|\langle g\psi_i, \psi_j \rangle - \langle g\phi_i, \phi_j \rangle| < \epsilon, \ \forall g \in K, \ \forall i, j.$$

Thm (Kazhdan). G has Kazhdan's property.

Outline of proof. Assume $1 \prec \sigma$ and $1 \not\leq \sigma$.

Let
$$H = \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & 1 \end{pmatrix} \cong \operatorname{SL}_2(\mathbb{R}) \ltimes \mathbb{R}^2.$$

Lem (Howe-Moore, "decay of matrix coeffs").

$$1 \nleq \sigma \Rightarrow \forall v \in V, \ \forall \epsilon > 0, \ \exists \ cpct \ K,$$
$$\forall g \notin K, \ \langle gv, v \rangle < \epsilon.$$

Therefore $1 \not\leq \sigma|_{\mathbb{R}^2}$.

Key Lemma.
$$1 \nleq \sigma|_{\mathbb{R}^2} \Rightarrow \sigma|_H \prec \infty \cdot L^2(H)$$
.

Therefore
$$1 \prec \sigma|_H \prec \infty \cdot L^2(H)$$
, so $1 \prec L^2(H)$.

Therefore (by definition), H is amenable.

But H is not amenable, because $H/\operatorname{Rad} H = \operatorname{SL}_2(\mathbb{R})$ is not compact. $\to \leftarrow$

Prop. A connected Lie group H is amenable iff $H/\operatorname{Rad} H$ is cpct.

Defn. H amenable if $1 \prec L^2(H)$.

Lem. σ a unitary repn of $H = \mathrm{SL}_2(\mathbb{R}) \ltimes \mathbb{R}^2$. $1 \not\leq \sigma|_{\mathbb{R}^2} \Rightarrow \sigma \prec \infty \cdot L^2(H)$.

We may assume σ is irreducible:

$$\sigma = \int_X \pi_x \, d\mu(x) \prec \int_X \left(\infty \cdot L^2(H)\right) d\mu(x)$$
$$= \infty \cdot L^2(H)$$

Thm (Mackey). $\sigma|_{\mathbb{R}^2} \neq 1 \Rightarrow$

 $\exists \ conn \ proper \ subgrp \ S \supset \mathbb{R}^2, \ and \ a \ repn \ \pi \ of \ S,$ such that $\sigma = \operatorname{Ind}_S^H(\pi)$.

It suffices to show $\pi \prec \infty \cdot L^2(S)$, because then $\sigma = \operatorname{Ind}_S^H(\pi) \prec \operatorname{Ind}_S^H(\infty \cdot L^2(S)) = \infty \cdot L^2(H)$

Note that S is solvable, hence amenable.

Lem. π a repn of an amenable group S. Then $\pi \prec \infty \cdot L^2(S)$.

Proof. S amenable $\Rightarrow 1 \prec L^2(S)$. So $\pi \prec \pi \otimes L^2(S) \cong (\dim \pi)L^2(S) \leq \infty \cdot L^2(S)$. **Thm** (Kazhdan). $G = SL_3(\mathbb{R})$ is Kazhdan.

Proof. Assume $1 \prec \sigma$ and $1 \nleq \sigma$.

Let
$$H \cong \operatorname{SL}_2(\mathbb{R}) \ltimes \mathbb{R}^2 \subset G$$
.
Write $\sigma|_H = \int_X \sigma_x \, dx$.

$$|\sigma_x|_{\mathbb{R}^2} \neq 1 \Rightarrow \sigma_x = \operatorname{Ind}_{S_x}^H(\pi_x).$$

$$S_x$$
 amenable $\Rightarrow \pi_x \prec \infty \cdot L^2(S_x)$
 $\Rightarrow \sigma_x = \operatorname{Ind}_{S_x}^H(\pi_x) \prec \infty \cdot L^2(H)$

$$1 \prec \sigma|_{H} = \int_{X} \sigma_{x} \, dx \prec \infty \cdot L^{2}(H).$$

So H is amenable. $\rightarrow \leftarrow$

References

- A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser, 1994 (Chapter 3).
- R.J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, 1984 (Chap. 7).