Introduction to Arithmetic Groups

Dave Witte Morris University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

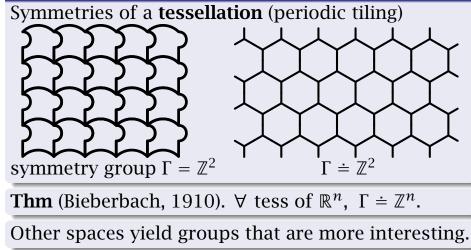
Abstract. This lecture is intended to introduce non-experts to this beautiful topic.

For further reading, see: D.W.Morris, *Introduction to Arithmetic Groups*. Deductive Press, 2015. http://arxiv.org/src/math/0106063/anc/

Geometric motivation

Group theory = the study of symmetry

Example



What is an arithmetic group?

Every *arithmetic group* Γ is a group of matrices with integer entries.

More precisely, $\Gamma \doteq SL(n, \mathbb{Z}) \cap G =: G_{\mathbb{Z}}$ where

•
$$SL(n, \mathbb{Z}) = \begin{cases} n \times n \text{ mats } (a_{ij}) & \text{det} = 1 \end{cases}$$

• $G \subseteq SL(n, \mathbb{R})$ is connected Lie group $\frac{\text{semisimple,}}{\det' d \text{ over } \mathbb{Q}}$

Examples

- $G = \operatorname{SL}(n, \mathbb{R}) \Rightarrow \Gamma = \operatorname{SL}(n, \mathbb{Z})$
- $G = \operatorname{SO}(1, n) = \operatorname{Isom}(x_1^2 x_2^2 \dots x_{n+1}^2)$ $\Rightarrow \Gamma = \operatorname{SO}(1, n)_{\mathbb{Z}}$
- subgroup of Γ that has finite index

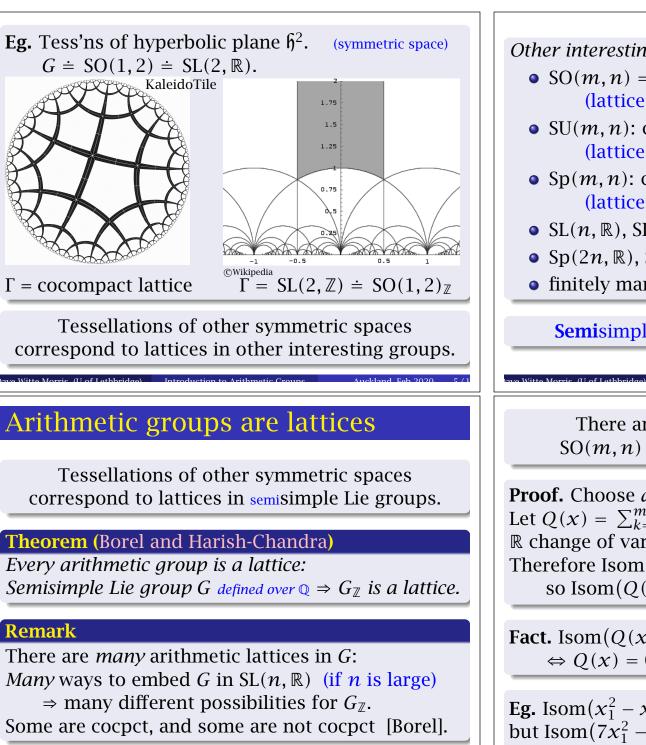
Other spaces yield groups that are more interesting.

- \mathbb{R}^n is a symmetric space:
 - **homogeneous**: every pt looks like all other pts. $\forall x, y, \exists \text{ isometry } x \mapsto y. x' \in Y$
 - reflection through a point (x' = -x) is an isometry.

Assume tiles of tess of *X* are compact (or finite vol). Then symmetry group Γ is a *lattice* in Isom(*X*) = *G*:

 G/Γ is compact(or has finite volume). Γ is cocompact
or uniform Γ is noncocompact
or nonuniform

Many lattices in G are arithmetic subgroups.



Other interesting groups G: simple Lie group.

- SO(m, n) = Isom $\left(\sum_{k=1}^{m} x_k^2 \sum_{k=1}^{n} x_{m+k}^2\right)$ (lattice: $G_{\mathbb{Z}}$)
- SU(*m*, *n*): change \mathbb{R} to \mathbb{C} and x_k^2 to $x_k \overline{x_k}$ (lattice: $G_{\mathbb{Z}+\mathbb{Z}i}$)
- Sp(m, n): change \mathbb{C} to \mathbb{H} (lattice: $G_{\mathbb{Z}+\mathbb{Z}i+\mathbb{Z}j+\mathbb{Z}k} = G_{\mathbb{H}_{\mathbb{Z}}}$)
- $SL(n, \mathbb{R})$, $SL(n, \mathbb{C})$, $SL(n, \mathbb{H})$
- Sp $(2n, \mathbb{R})$, Sp $(2n, \mathbb{C})$, SO (n, \mathbb{H})
- finitely many "exceptional grps" $(E_6, E_7, E_8, F_4, G_2)$

Semisimple Lie group $\doteq G_1 \times G_2 \times \cdots \otimes G_r$.

There are *many* arithmetic lattices in $SO(m, n) = Isom(\sum_{k=1}^{m} x_k^2 - \sum_{k=1}^{n} x_{m+k}^2).$

Proof. Choose $a_1, a_2, \ldots, a_{m+n} \in \mathbb{Q}^+$. Let $Q(x) = \sum_{k=1}^m a_k x_k^2 - \sum_{k=1}^n a_{m+k} x_{m+k}^2$. \mathbb{R} change of vars takes Q(x) to the standard form. Therefore $\text{Isom}(Q(x)) \cong \text{SO}(m, n)$, so $\text{Isom}(Q(x))_{\mathbb{Z}} \rightsquigarrow \text{latt in SO}(m, n)$.

Fact. Isom $(Q(x))_{\mathbb{Z}}$ nonuniform $\Leftrightarrow Q(x) = 0$ has nonzero soln in \mathbb{Z}^{m+n} .

Eg. Isom $(x_1^2 - x_2^2 - x_3^2 - x_3^2)_{\mathbb{Z}}$ is noncocompact latt, but Isom $(7x_1^2 - x_2^2 - x_3^2 - x_3^2)_{\mathbb{Z}}$ is cocompact latt.

Theorem (Borel and Harish-Chandra)

Every arithmetic group is a lattice.

Converse:

Margulis Arithmeticity Theorem

Every lattice in simple G is an arithmetic subgroup unless $G \doteq SO(1, n)$ or SU(1, n).

Remark (technicality)

Some cocpct latts use *algebraic integers* not in \mathbb{Z} . Let $\alpha = \sqrt{2}$ (or other algebraic int) and $F = \mathbb{Q}[\alpha]$. If *G* is defined over *F* and $G_{\mathbb{Z}[\alpha]}$ is <u>discrete</u> (no acc pts) then $G_{\mathbb{Z}[\alpha]}$ is an arithmetic subgroup of *G*. It is a lattice in *G*. ("Restriction of scalars")

Lemma (Selberg)

 $G_{\mathbb{Z}}$ is virtually torsion-free : \exists finite-index subgrp $\Gamma' \subseteq G_{\mathbb{Z}}$, Γ' is torsion-free. (no nontrivial elements of finite order)

Proof.

Natural homo $\rho_3: \Gamma \to SL(n, \mathbb{Z}/3\mathbb{Z}), \quad \Gamma' = \ker(\rho_3).$ Since $\Gamma/\Gamma' \cong \rho_3(\Gamma) \subseteq SL(n, \mathbb{Z}/3\mathbb{Z})$ is finite, it suffices to show Γ' is torsion-free.

Let
$$\gamma \in \Gamma'$$
, write $\gamma = \mathbf{I} + 3^k T$, $T \neq 0 \pmod{3}$.
 $\gamma^m = (\mathbf{I} + 3^k T)^m$
 $= \mathbf{I} + m(3^k T) + {m \choose 2} 3^{2k} T^2 + \cdots$
 $\equiv \mathbf{I} + 3^k m T \pmod{3^{k+\ell+1}}$ if $3^\ell \mid m$
 $\neq \mathbf{I} \pmod{3^{k+\ell+1}}$ if $3^{\ell+1} \nmid m$.

Basic algebraic properties

Proposition

 $G_{\mathbb{Z}}$ is finitely generated.

Proof when Γ **is cocompact.**

Choose bounded, open $C \subset G$, such that $G_{\mathbb{Z}} C = G$. Let $S = \{ s \in G_{\mathbb{Z}} \mid sC \cap C \neq \emptyset \}$. *S* is finite, because $G_{\mathbb{Z}}$ is discrete. $\langle S \rangle C$ is open and closed: Acc pt $p \in \gamma C \Rightarrow \gamma C \cap \langle S \rangle C \neq \emptyset$ $\Rightarrow C \cap \gamma^{-1} s_1 \cdots s_n C \neq \emptyset$ $\Rightarrow \gamma^{-1} s_1 \cdots s_n \in S \Rightarrow \gamma \in \langle S \rangle$ $\Rightarrow p \in \langle S \rangle C$. So $\langle S \rangle C = G$. Preceding argument: $G_{\mathbb{Z}} = \langle S \rangle$.

Lemma. The centre of Γ is finite.

Exercise

Prove when Γ is a cocompact lattice in $G = SL(n, \mathbb{R})$.

Hint. More precisely, show $Z(\Gamma) \subseteq Z(G)$.

For $z \in Z(\Gamma)$, the conjugacy class z^G is compact.

If $a = \text{diag}(a_1, \dots, a_n)$ is any diagonal(izable) element of *G*, then

 $(a^{-n} z a^n)_{ij} = z_{ij} \cdot (a_j/a_i)^n.$ This is bounded, so it must be constant. Therefore *a* centralizes *z*.

G is generated by its diagonalizable elements.