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Abstract. This lecture is intended to introduce
non-experts to this beautiful topic.

For further reading, see:
D. W. Morris, Introduction to Arithmetic Groups.

Deductive Press, 2015.
http://arxiv.org/src/math/0106063/anc/
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What is an arithmetic group?
Every arithmetic group Γ is a group of matrices

with integer entries.
More precisely, Γ " SL(n,Z)∩G =: GZ where

SL(n,Z) =
{
n×n mats (aij)

∣∣∣∣∣
ai,j ∈ Z,
det = 1

}

G ⊆ SL(n,R) is connected Lie group semisimple,
def’d over Q

Examples
G = SL(n,R)⇒ Γ = SL(n,Z)
G = SO(1, n) = Isom(x2

1 − x2
2 − · · ·− x2

n+1)
⇒ Γ = SO(1, n)Z

subgroup of Γ that has finite index
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Geometric motivation
Group theory = the study of symmetry

Example
Symmetries of a tessellation (periodic tiling)

symmetry group Γ = Z2 Γ " Z2

Thm (Bieberbach, 1910). ∀ tess of Rn, Γ " Zn.

Other spaces yield groups that are more interesting.

Dave Witte Morris (U of Lethbridge) Introduction to Arithmetic Groups Auckland, Feb 2020 3 / 12

Other spaces yield groups that are more interesting.

Rn is a symmetric space:
homogeneous:
every pt looks like all other pts.
∀x,y , ∃ isometry x ! y .

reflection through a point

x

x0

y

y 0

0

(x′ = − x) is an isometry.

Assume tiles of tess of X are compact (or finite vol).
Then symmetry group Γ is a lattice in Isom(X) = G:

G/Γ is compact (or has finite volume).
Γ is cocompact

or uniform
Γ is noncocompact

or nonuniform

Many lattices in G are arithmetic subgroups.
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Eg. Tess’ns of hyperbolic plane h2. (symmetric space)

G " SO(1,2) " SL(2,R).
KaleidoTile

c©Wikipedia

Γ = cocompact lattice Γ = SL(2,Z) " SO(1,2)Z

Tessellations of other symmetric spaces
correspond to lattices in other interesting groups.
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Other interesting groups G: simple Lie group.
SO(m,n) = Isom

(∑m
k=1x2

k −
∑n
k=1x2

m+k
)

(lattice: GZ)
SU(m,n): change R to C and x2

k to xk xk
(lattice: GZ+Zi)

Sp(m,n): change C to H
(lattice: GZ+Zi+Zj+Zk = GHZ)

SL(n,R), SL(n,C), SL(n,H)
Sp(2n,R), Sp(2n,C), SO(n,H)
finitely many “exceptional grps” (E6, E7, E8, F4, G2)

Semisimple Lie group " G1 ×G2 × · · ·Gr .
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Arithmetic groups are lattices

Tessellations of other symmetric spaces
correspond to lattices in semisimple Lie groups.

Theorem (Borel and Harish-Chandra)
Every arithmetic group is a lattice:
Semisimple Lie group G defined over Q ⇒ GZ is a lattice.

Remark
There are many arithmetic lattices in G:
Many ways to embed G in SL(n,R) (if n is large)

⇒ many different possibilities for GZ.
Some are cocpct, and some are not cocpct [Borel].
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There are many arithmetic lattices in
SO(m,n) = Isom

(∑m
k=1x2

k −
∑n
k=1x2

m+k
)
.

Proof. Choose a1, a2, . . . , am+n ∈ Q+.
Let Q(x) =

∑m
k=1ak x2

k −
∑n
k=1am+k x2

m+k.
R change of vars takes Q(x) to the standard form.
Therefore Isom

(
Q(x)

)
- SO(m,n),

so Isom
(
Q(x)

)
Z" latt in SO(m,n).

Fact. Isom
(
Q(x)

)
Z nonuniform

# Q(x) = 0 has nonzero soln in Zm+n.

Eg. Isom
(
x2

1 − x2
2 − x2

3 − x2
3
)
Z is noncocompact latt,

but Isom
(
7x2

1 − x2
2 − x2

3 − x2
3
)
Z is cocompact latt.

Dave Witte Morris (U of Lethbridge) Introduction to Arithmetic Groups Auckland, Feb 2020 8 / 12



Theorem (Borel and Harish-Chandra)
Every arithmetic group is a lattice.

Converse:

Margulis Arithmeticity Theorem
Every lattice in simple G is an arithmetic subgroup

unless G " SO(1, n) or SU(1, n).

Remark (technicality)
Some cocpct latts use algebraic integers not in Z.
Let α =

√
2 (or other algebraic int) and F = Q[α].

If G is defined over F and GZ[α] is discrete (no acc pts)

then GZ[α] is an arithmetic subgroup of G.
It is a lattice in G. (“Restriction of scalars”)
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Basic algebraic properties
Proposition
GZ is finitely generated.

Proof when Γ is cocompact.
Choose bounded, open C ⊂ G, such that GZC = G.
Let S = { s ∈ GZ | sC ∩ C ≠∅ }.

S is finite, because GZ is discrete.
〈S〉C is open and closed:

Acc pt p ∈ γC ⇒ γC ∩ 〈S〉C ≠∅
⇒ C ∩ γ−1s1 · · · snC ≠∅
⇒ γ−1s1 · · · sn ∈ S ⇒ γ ∈ 〈S〉
⇒ p ∈ 〈S〉C .

So 〈S〉C = G. Preceding argument: GZ = 〈S〉.
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Lemma (Selberg)
GZ is virtually torsion-free :

∃ finite-index subgrp Γ ′ ⊆ GZ, Γ ′ is torsion-free.
(no nontrivial elements of finite order)

Proof.
Natural homo ρ3 : Γ → SL(n,Z/3Z), Γ ′ = ker(ρ3).
Since Γ/Γ ′ - ρ3(Γ) ⊆ SL(n,Z/3Z) is finite,
it suffices to show Γ ′ is torsion-free.

Let γ ∈ Γ ′, write γ = I+ 3kT , T 4≡ 0 (mod 3).
γm = (I+ 3kT)m

= I+m(3kT)+
(
m
2

)
32kT 2 + · · ·

≡ I+ 3kmT (mod 3k+$+1) if 3$ |m
4≡ I (mod 3k+$+1) if 3$+1 %m.
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Lemma. The centre of Γ is finite.

Exercise
Prove when Γ is a cocompact lattice in G = SL(n,R).

Hint. More precisely, show Z(Γ) ⊆ Z(G).
For z ∈ Z(Γ), the conjugacy class zG is compact.

If a = diag(a1, . . . , an) is any diagonal(izable)
element of G, then

(a−n zan)ij = zij · (aj/ai)n.
This is bounded, so it must be constant.

Therefore a centralizes z.

G is generated by its diagonalizable elements.
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