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Abstract. Unipotent flows are very well-behaved dynam-
ical systems. In particular, Marina Ratner has shown that
every invariant measure for such a flow is of a nice alge-
braic form. This talk will present some consequences of
this important theorem, and explain a few of the ideas of
the proof. In general, algebraic technicalities will be pushed
to the background as much as possible.

Eg. Let X = torus T? = R?/Z?.
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Any v € R? defines a flow on T?: ¢, (z) = = + tv

If the slope of v is irrational, it is classical that
Lebesgue is the only invariant measure.

Ezample. v = (a,b,0) defines
a flow ¢y on T® = R®/Z3
and T? x {0} is invariant.
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Lebesgue on T? x {0} is an invariant measure.

For every v, any ergodic invariant probability mea-
sure for ¢, on T is the Lebesgue measure on some
(0<k<3).

invariant subtorus TF

Note that R? is a Lie group.

Le., it is a group (under vector addition) and a
manifold, and the group operations are smooth.

The subgroup Z? is closed and discrete.
The quotient space Z*\R? = T? is a manifold.

Let G be any Lie group,
and let I' be a closed, discrete subgroup.

Then I'\G is a manifold,
a homogeneous space.

It is best if I'\G is compact.

(More generally, we can allow I'\G to have finite
volume. We say I is a lattice.)

Eg. G =SLy(R) = { 2 x 2 real mat’s of det 1 }.
Let T = SLy(7Z). Cee
Then X = I'\G has finite vol.

Other choices of I'
can make I'\G cpct.

Define u, a: R — SLy(R) by 7 Y i
e (1t ¢ et 0
“‘(0 1>and“_(o et )

Each of these is a homomorphism.

u! is a unipotent one-parameter subgroup.

Define o;(z) = zu’.
u! = “horocycle flow”

a' = “geodesic flow”

The volume on I'\G is a finite, invariant measure.
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Geometric description of the horocycle flow.
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The geodesic flow on TTH?Z.
v:T'H? — T H?:

. . — . .
Given unit vector v € TTH?, move it a distance ¢
along the geodesic it determines.
Geodesic in H? is a semicircle | z-axis.

Horocycle in H? is a circle tangent to z-axis.

v e T'H? is tangent to a unique geodesic.

o L two horocycles: expanding and contracting.
Move it a distance ¢ along the (contracting) horo-
cycle it determines.

Factors through to flow on unit tangent bundle
T M of any surface of constant neg curvature.

Why study unipotent flows?
e Flows on homogeneous spaces are “easy.”

Algebraic tools can probe the structure.
This is particularly effective for unipotent flows.

e Study actions of SL,,(R) (n>2).
Only known C'*° actions are on homog spaces (/).
SL,,(R) has many unipotent elements.

If a single unipotent element acts by translation,
then the whole group acts by translations [Witte].

e Applications in Number Theory.

Oppenheim Criterion [Margulis].

Let Q be real, indefinite, non-degenerate quadratic
form in > 3 variables (e.g., #2 — vV2zy + v/32%).

Then the Z-values of () are dense in R
unless () &~ Z-coeflicients.

More careful analysis shows (except in some small
cases) that values of @) are uniformly distributed:

Thm [Eskin-Margulis-Mozes|. Let Q) be real, non-
degenerate quadratic form of signature (p,q) with
p>3andqg>1

and assume Q) % Z-coefficients.
Then dA, Va < b,

a< Q(v) <b,
#{UEZHQ Il < T }

~Ab—a)TP172

as'T — oo.

In a similar vein, the theorem can also be applied
to obtain asymptotic formulas for the number of
integer points on certain homogeneous varieties

[Eskin-Mozes-Shah].

Thm (Furstenberg). I'\SLa(R) cpct = the only
invariant probability measure for u® is the ordinary
volume.

Hence, every u'-orbit is uniformly distributed.
(In contrast, a’ has many invariant measures.)

I"\SLs(R) noncpct = other possibility is

the measure supported on a

closed orbit [Dani]. —
Main Theorem (Ratner). For unipotent flow on
any homogeneous space G/I':

every ergodic invariant probability measure is the

volume on some closed orbit of some subgroup con-

taining u'.

Eg. SLa(Z)\SL(R) — SLy(Z)\SLs(R)




Cor. (Ratner). For unipotent flow on G/T,
with ' a lattice:
the closure of every orbit is a closed orbit of some
subgroup L containing u’.
Also: the L-orbit has finite L-inv meas ,
and the u'-orbit is unif distrib w.r.t. .

The same is true (except uniform distribution) if
{u'} is replaced with any subgroup generated by
unipotent elements.

Proof of Oppenheim Criterion.
e G =SL(3,R), ' =SL(3,Z).
e Qo(w1,T2,73) = 25 + 15 — 23.
e H=S0(2,1) =SO(Qo)-
Assume (wolog) signature of @ is (2, 1),

so 3g€SLB3,R), Q=XQpog.

Algebra: there are 2 possibilities for L in the con-
clusion of Ratner’s Theorem: H or G.

Case 1. The orbit '\I'gH has finite measure.
Then 'NgHg™ 1'=50(Q),
so () = Z-coefficients.

Lis a lattice in gHg™

Case 2. I'gH is dense in G.

Q(Z%) = Qo(Z%g)  (defn of g)
= Qo(ZTyg) (Z°T = 73)
= Qo(Z’TgH) (defn of H)
~ Qo(R?) (assumption of this case)
=R. [

Cor (Ratner Rigidity Theorem). Let oy, @} be
unip flows on finite-vol T\SLa(R), T"\SLy(R).
If o = ¢, measurably, then T' =T" (up to cony).

I.e., measurably isomorphic = obvious even to an
algebraist that they are isomorphic.

Cor (Witte). True for any Lie group G in the
place of SLa(R).
(In fact, even for T\G and T'\G'.)

(Contrast: all geodesic flows are isomorphic.)

Proof. Let ¢: (¢, X) —

graph(¢) € X x X'
supports ¢; X ¢j-inv measure.

— (o5, X") be an iso.

!
x|, — .

/
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= graph(¢)) is a subgroup (=).

X
= 1) is a group homomorphism (a.e.). []

Quotients. Let (o, X) and (¢}, X') be flows.

)
If 3¢: X — X' with ¥(pi(2)) = ¢ (v(x)),
then (¢}, X') is a quotient of (¢, X).

Cor (Ratner). Every quotient of (u’,T'\SL2(R))
is isomorphic to a unipotent flow (u',T"\SL2(R)).

Cor (Witte). Every quotient of any unipotent flow
on any T\G is a double-coset space IT'\G /K.
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Points can move apart at exponential speed

t
Geodesic flow: a' = (e 0 )

transverse to the orbits.
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d(z,zq) = |lgll.  d(zu’,zqu’) = |[u”"qu']].
_ _ )
wtqut = a—t B+ (a—0)t—~t
0 0+t
Points move apart at polynomial speed.
*_d
k< [ >l p

de > 0 such that if d(z¢,y:) < 1 for t € [k, k + 1],
then d(z;,y:) < 1.1 for t € [k, E+(1+ e)l}.

Shearing. Fastest motion is parallel to the orbits.

Y Yt
ﬁ
X Zy

Choose u € g with exp(tu) = u’,
q € g with expg = q.

u”'qu’ = (Adu')q

= exp(ad(tu))q
=g+ tlg,u] + 3t*[q,u,u] £ $tPg, u, u] £ -

The largest term has the highest power of ¢:
the last nonzero term (ad g)kg.
Then [(adu)*q,u] =0
(because the next term does not appear)
so (adu)k ¢ is in the centralizer of u'.

The direction of fastest relative motion is along

the centralizer of u'.

Similarly: the fastest transverse motion is along

the normalizer.

Fastest transverse motion: last term not in u,
so [(adu)¥q,u] € u.
Therefore (ad g)kg normalizes u.

Thm (Ratner). FEwvery nontrivial quotient of
(u",T\SL2(R)) has finite fibers.

Le., ¥:T\SLy(R) — X’ with ¢ (zu’) = ©}((z))
= ¢ 1(2) is finite a.e.

Show: if ¢y~ !(2’) infinite, then ¢} has a fixed pt.

Suppose z~y with ¥(x)=1Y(y).
Assume v uniformly continuous [Lusin’s Thm].
Yy Yt
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Flow along the orbits until d(z;, y,) = 1.
Then y; ~ @1 ().

So P(ye) = V(pi(xe)) = ¢1(d(2e)) = L1 (Y (Ye))-
d(y (2x), z1) < 1/k.

Subsequence converges to a fixed point.

Thm (Ratner). FEvery nontrivial quotient of
(u",T\SL2(R)) has finite fibers.

Cor (Ratner). Many horocycle flows are prime.

(Le., they have no nontrivial, proper quotients.)
Thm (Ratner). Many horocycle flows have mini-

mal self joinings.

Joining: An invariant measure on X x X' that
projects to the given measures on X and X’.
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Thm (Ratner). Non-product, ergodic joinings of
horocycle flows have finite fibers.

(w4 is concentrated on a set with only finitely many
points from each horizontal or vertical line.)




Thm (Ratner). Non-product, ergodic joinings of
horocycle flows have finite fibers.

(14 is concentrated on a set with only finitely many
points from each horizontal or vertical line.)

Take (z,a), (z,b) € X x X.

ar = ¢1(by). G:g

(z,a); = (24, a¢) = (xt7¢1(bt)) = Ul((va)t)-
If 4 is ve-invariant, then u = product measure.

So (v1)«(p) # p, but (v1). (1) is ¢-invariant.
Therefore (v1)«(pn) L p.

Suppose a = b.

3K C X x X with p(K) > 0.9, d(K,v(K)) > 0.
Claim. K intersects each vert line in a finite set.

If not, 3(z,a), (z,b) € K very close together.
(z,a)t, (z,b); € K = v1(x,b): € v1(K).
Since (z,a); ~ vi((z,b):), then d(K, v (K)) = 0.

Direct proof of the rigidity theorem.

Defn. Suppose :I'\G — A\H, g€ G, g€ H.

If (T'zg) = ¢¥(I'x) - g for a.e. x € G,
then v is affine for g (via g).

Thm. u, @ ergodic unipotent on T\G and A\H,
:T\G — A\H is measure-preserving.

¥ affine for u via u = Y affine for each g € G.
[This implies 1 is an affine map (a.e.).]

Suppose G and H are abelian (and I' = A = e).

Fix g € G. Define A,: G — H by
(@ +9) = P(x) + Ag(s).

We wish to show Ay is constant (a.e.):
set g = Ay.

Since u is ergodic, suffices to show A, is constant:
Ayl +u) = A, ().

Same argument works in general if:

e gc Cq(u),
o Ay(x) € Cq(a),
e C(u) acts freely on A\H.

Key Fact (Ratner). v maps Cg(u)°-orbits into
Cy (u)°-orbits.

Proof. Polynomial divergence of orbits (4 Lusin).

Proof of special case of Ratner’s Theorem.
(Similar to proof of joinings theorem.)

Assume U = Stabg(p) is unipotent.

We show p is supported on a single U-orbit.
By ergodicity, it suffices to find a U-orbit of posi-

tive measure.
So suppose all U-orbits have measure 0.

For a.e. z € I'\G, 3 y = x, such that
e y ¢ zU, and
e y is in the support of pu.
Yy = x1C, for some ¢ € Ng(U) o U.
We may assume z;,yy € K, where K N Kc = ().

This contradicts the fact that d(K, Kc¢) > 0. []

[Actually, we only showed pu is supported on an
orbit of Ng(U) (because ¢ = e if y € xNg(U)),
but it is easy to finish from there.]
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