Some ideas in the proof of Ratner's Theorem

Dave Witte

Department of Mathematics Oklahoma State University Stillwater, OK 74078

Abstract. Unipotent flows are very well-behaved dynamical systems. In particular, Marina Ratner has shown that every invariant measure for such a flow is of a nice algebraic form. This talk will present some consequences of this important theorem, and explain a few of the ideas of the proof. In general, algebraic technicalities will be pushed to the background as much as possible.

Eq. Let
$$X = \text{torus } \mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$$
.

Any $v \in \mathbb{R}^2$ defines a flow on \mathbb{T}^2 : $\varphi_t(x) = x + tv$

If the slope of v is irrational, it is classical that Lebesgue is the only invariant measure.

Example. v = (a, b, 0) defines a flow φ_t on $\mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$

and $\mathbb{T}^2 \times \{0\}$ is invariant.

Lebesgue on $\mathbb{T}^2 \times \{0\}$ is an invariant measure.

For every v, any ergodic invariant probability measure for φ_t on \mathbb{T}^3 is the Lebesgue measure on some invariant subtorus \mathbb{T}^k $(0 \le k \le 3)$.

Note that \mathbb{R}^2 is a Lie group.

I.e., it is a group (under vector addition) and a manifold, and the group operations are smooth.

The subgroup \mathbb{Z}^2 is closed and discrete.

The quotient space $\mathbb{Z}^2 \setminus \mathbb{R}^2 = \mathbb{T}^2$ is a manifold.

- Let G be any Lie group, and let Γ be a closed, discrete subgroup.
- Then $\Gamma \setminus G$ is a manifold, a homogeneous space.

It is best if $\Gamma \setminus G$ is compact.

(More generally, we can allow $\Gamma \setminus G$ to have finite volume. We say Γ is a *lattice*.)

Eg. $G = \operatorname{SL}_2(\mathbb{R}) = \{ 2 \times 2 \text{ real mat's of det } 1 \}.$ Let $\Gamma = \operatorname{SL}_2(\mathbb{Z}).$ Then $X = \Gamma \backslash G$ has finite vol.

> Other choices of Γ can make $\Gamma \backslash G$ cpct.

Define $u, a: \mathbb{R} \to \mathrm{SL}_2(\mathbb{R})$ by

$$u^t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$
 and $a^t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$.

Each of these is a homomorphism.

 u^t is a **unipotent** one-parameter subgroup.

Define $\varphi_t(x) = xu^t$.

 u^t = "horocycle flow" a^t = "geodesic flow"

The volume on $\Gamma \backslash G$ is a finite, invariant measure.

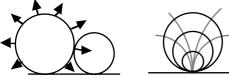
Geometric description of the horocycle flow.

The geodesic flow on $T^1 \mathbb{H}^2$. $\gamma_t: T^1 \mathbb{H}^2 \to T^1 \mathbb{H}^2$:

Given unit vector $\overrightarrow{v} \in T^1 \mathbb{H}^2$, move it a distance t along the geodesic it determines.

Geodesic in \mathbb{H}^2 is a semicircle $\perp x$ -axis.

Horocycle in \mathbb{H}^2 is a circle tangent to x-axis.



 $\overrightarrow{v}\in T^1\mathbb{H}^2$ is tangent to a unique geodesic.

 $\overrightarrow{v} \perp$ two horocycles: expanding and contracting. Move it a distance t along the (contracting) horocycle it determines.

Factors through to flow on unit tangent bundle T^1M of any surface of constant neg curvature.

More careful analysis shows (except in some small cases) that values of Q are uniformly distributed: **Thm** [Eskin-Margulis-Mozes]. Let Q be real, nondegenerate quadratic form of signature (p,q) with $p \ge 3$ and $q \ge 1$ and assume $Q \not\approx \mathbb{Z}$ -coefficients. Then $\exists \lambda, \forall a < b,$ $\# \left\{ v \in \mathbb{Z}^{p+q} \middle| \begin{array}{c} a < Q(v) < b, \\ \|v\| \le T \end{array} \right\}$ $\sim \lambda(b-a)T^{p-q-2}$ as $T \to \infty$. In a similar vein, the theorem can also be applied

to obtain asymptotic formulas for the number of integer points on certain homogeneous varieties [Eskin-Mozes-Shah]. Why study unipotent flows?

• Flows on homogeneous spaces are "easy."

Algebraic tools can probe the structure.

This is particularly effective for unipotent flows.

• Study actions of $SL_n(\mathbb{R})$ (n > 2).

Only known C^{∞} actions are on homog spaces (\approx).

 $SL_n(\mathbb{R})$ has many unipotent elements.

If a single unipotent element acts by translation, then the whole group acts by translations [Witte].

• Applications in Number Theory.

Oppenheim Criterion [Margulis].

Let Q be real, indefinite, non-degenerate quadratic form in ≥ 3 variables (e.g., $x^2 - \sqrt{2}xy + \sqrt{3}z^2$).

Then the \mathbb{Z} -values of Q are dense in \mathbb{R} unless $Q \approx \mathbb{Z}$ -coefficients.

Thm (Furstenberg). $\Gamma \setminus SL_2(\mathbb{R})$ cpct \Rightarrow the only invariant probability measure for u^t is the ordinary volume.

Hence, every u^t -orbit is uniformly distributed. (In contrast, a^t has many invariant measures.)

 $\Gamma \setminus SL_2(\mathbb{R}) \text{ noncpct} \Rightarrow \text{other possibility is}$ the measure supported on a closed orbit [Dani].

Main Theorem (Ratner). For unipotent flow on any homogeneous space G/Γ :

every ergodic invariant probability measure is the volume on some closed orbit of some subgroup containing u^t .

Eg.
$$SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R}) \hookrightarrow SL_3(\mathbb{Z}) \setminus SL_3(\mathbb{R})$$

 Cor. (Ratner). For unipotent flow on G/Γ, with Γ a lattice: the closure of every orbit is a closed orbit of some subgroup L containing u^t. Also: the L-orbit has finite L-inv meas μ, and the u^t-orbit is unif distrib w.r.t. μ. 	$\begin{array}{l} Proof \ of \ Oppenheim \ Criterion.\\ \bullet \ G = \operatorname{SL}(3,\mathbb{R}), \ \Gamma = \operatorname{SL}(3,\mathbb{Z}).\\ \bullet \ Q_0(x_1,x_2,x_3) = x_1^2 + x_2^2 - x_3^2.\\ \bullet \ H = \operatorname{SO}(2,1) = \operatorname{SO}(Q_0).\\ \operatorname{Assume} \ (\operatorname{wolog}) \ \text{signature} \ \text{of} \ Q \ \text{is} \ (2,1),\\ \operatorname{so} \ \exists \ g \in \operatorname{SL}(3,\mathbb{R}), \ Q = \lambda \ Q_0 \circ g. \end{array}$
The same is true (except uniform distribution) if $\{u^t\}$ is replaced with any subgroup generated by unipotent elements.	Algebra: there are 2 possibilities for L in the con- clusion of Ratner's Theorem: H or G . Case 1. The orbit $\Gamma \setminus \Gamma gH$ has finite measure. Then $\Gamma \cap gHg^{-1}$ is a lattice in $gHg^{-1} = \mathrm{SO}(Q)$, so $Q \approx \mathbb{Z}$ -coefficients.
	Case 2. $\Gamma g H$ is dense in G. $Q(\mathbb{Z}^3) = Q_0(\mathbb{Z}^3 g)$ (defn of g) $= Q_0(\mathbb{Z}^3 \Gamma g)$ ($\mathbb{Z}^3 \Gamma = \mathbb{Z}^3$) $= Q_0(\mathbb{Z}^3 \Gamma g H)$ (defn of H) $\approx Q_0(\mathbb{R}^3)$ (assumption of this case) $= \mathbb{R}$.
Cor (Ratner Rigidity Theorem). Let φ_t, φ'_t be unip flows on finite-vol $\Gamma \setminus \mathrm{SL}_2(\mathbb{R}), \Gamma' \setminus \mathrm{SL}_2(\mathbb{R})$. If $\varphi_t \cong \varphi'_t$ measurably, then $\Gamma = \Gamma'$ (up to conj).	Quotients. Let (φ_t, X) and (φ'_t, X') be flows. If $\exists \ \psi: X \to X'$ with $\psi(\varphi_t(x)) = \varphi'_t(\psi(x))$ then (φ'_t, X') is a quotient of (φ_t, X) .
I.e., measurably isomorphic \Rightarrow obvious even to an algebraist that they are isomorphic.	Cor (Ratner). Every quotient of $(u^t, \Gamma \setminus \mathrm{SL}_2(\mathbb{R}))$ is isomorphic to a unipotent flow $(u^t, \Gamma' \setminus \mathrm{SL}_2(\mathbb{R}))$
Cor (Witte). True for any Lie group G in the place of $SL_2(\mathbb{R})$. (In fact, even for $\Gamma \setminus G$ and $\Gamma' \setminus G'$.)	Cor (Witte). Every quotient of any unipotent flow on any $\Gamma \backslash G$ is a double-coset space $\Gamma' \backslash G/K$.
(Contrast: all geodesic flows are isomorphic.)	
<i>Proof.</i> Let ψ : $(\varphi_t, X) \to (\varphi'_t, X')$ be an iso.	Geodesic flow: $a^t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$
$ \operatorname{graph}(\psi) \subset X \times X' $ supports $\varphi_t \times \varphi'_t$ -inv measure. $X' $	$a^{-t}qa^{t} = \begin{pmatrix} \alpha & \beta e^{-2t} \\ \gamma e^{2t} & \delta \end{pmatrix}$
$\Rightarrow \operatorname{graph}(\psi) \text{ is a subgroup } (\approx).$	Points can move apart at exponential speed
$\Rightarrow \psi$ is a group homomorphism (a.e.).	transverse to the orbits.

$$u^{t} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \text{ and } a^{t} = \begin{pmatrix} e^{t} & 0 \\ 0 & e^{-t} \end{pmatrix}$$

$$xq \bullet \qquad xu^{t} \\ x \bullet \qquad$$

Thm (Ratner). Every nontrivial quotient of $(u^t, \Gamma \backslash \mathrm{SL}_2(\mathbb{R}))$ has finite fibers.

Cor (Ratner). Many horocycle flows are prime. (*I.e.*, they have no nontrivial, proper quotients.)

Thm (Ratner). Many horocycle flows have minimal self joinings.

Joining: An invariant measure on $X \times X'$ that projects to the given measures on X and X'.

Thm (Ratner). Non-product, ergodic joinings of horocycle flows have finite fibers.

(μ is concentrated on a set with only finitely many points from each horizontal or vertical line.)

($u^t, \Gamma \setminus SL_2(\mathbb{R})$) has finite fibers.

I.e.,
$$\psi: \Gamma \setminus \mathrm{SL}_2(\mathbb{R}) \to X'$$
 with $\psi(xu^t) = \varphi'_t(\psi(x))$
 $\Rightarrow \psi^{-1}(z)$ is finite *a.e.*

Show: if $\psi^{-1}(x')$ infinite, then φ'_1 has a fixed pt. $x \approx y$ with $\psi(x) = \psi(y)$. Suppose Assume ψ uniformly continuous [Lusin's Thm].

$$\underbrace{\begin{array}{c} y \\ x \end{array}}^{y} \underbrace{\begin{array}{c} y_t \\ y_t \end{array}}_{x_t}$$

Flow along the orbits until $d(x_t, y_t) = 1$.

Then
$$y_t \approx \varphi_1(x_t)$$
.
So $\psi(y_t) \approx \psi(\varphi_1(x_t)) = \varphi'_1(\psi(x_t)) = \varphi'_1(\psi(y_t))$.
 $d(\varphi'_1(z_k), z_k) < 1/k$.

Subsequence converges to a fixed point.

Thm (Ratner). Non-product, ergodic joinings of horocycle flows have finite fibers. (μ is concentrated on a set with only finitely many points from each horizontal or vertical line.) Take (x, a), $(x, b) \in X \times X$. Suppose $a \approx b$. $a_t \approx \phi_1(b_t)$. $(x, a)_t = (x_t, a_t) \approx (x_t, \phi_1(b_t)) = v_1((x, b)_t)$. If μ is v_t -invariant, then μ = product measure. So $(v_1)_*(\mu) \neq \mu$, but $(v_1)_*(\mu)$ is ϕ_t -invariant. Therefore $(v_1)_*(\mu) \perp \mu$. $\exists K \subset X \times X$ with $\mu(K) > 0.9$, $d(K, v_1(K)) > 0$. Claim. K intersects each vert line in a finite set. If not, $\exists (x, a), (x, b) \in K$ very close together. $(x, a)_t, (x, b)_t \in K \Rightarrow v_1(x, b)_t \in v_1(K)$. Since $(x, a)_t \approx v_1((x, b)_t)$, then $d(K, v_1(K)) = 0$.

 $\psi(x) + \Delta_g(x) = \psi(x+g)$ = $\psi(x+u+g-u)$ = $\psi((x+u)+g) - \tilde{u}$ = $\psi(x+u) + \Delta_g(x+u) - \tilde{u}$ = $\psi(x) + \tilde{u} + \Delta_g(x+u) - \tilde{u}$ = $\psi(x) + \Delta_g(x+u)$.

Same argument works in general if:

- $g \in C_G(u)$,
- $\Delta_g(x) \in C_G(\tilde{u}),$
- $C_G(\tilde{u})$ acts freely on $\Lambda \backslash H$.

Key Fact (Ratner). ψ maps $C_G(u)^\circ$ -orbits into $C_H(\tilde{u})^\circ$ -orbits.

Proof. Polynomial divergence of orbits (+ Lusin).

Direct proof of the rigidity theorem.

Defn. Suppose $\psi: \Gamma \setminus G \to \Lambda \setminus H, g \in G, \tilde{g} \in H$. If $\psi(\Gamma x g) = \psi(\Gamma x) \cdot \tilde{g}$ for a.e. $x \in G$, then ψ is affine for g (via \tilde{g}).

Thm. u, \tilde{u} ergodic unipotent on $\Gamma \backslash G$ and $\Lambda \backslash H$, $\psi: \Gamma \backslash G \to \Lambda \backslash H$ is measure-preserving. ψ affine for u via $\tilde{u} \Rightarrow \psi$ affine for each $g \in G$. [This implies ψ is an affine map (a.e.).]

Suppose G and H are abelian (and $\Gamma = \Lambda = e$).

Fix $g \in G$. Define $\Delta_g: G \to H$ by $\psi(x+g) = \psi(x) + \Delta_g(s).$

We wish to show Δ_g is constant (a.e.): set $\tilde{g} = \Delta_g$.

Since u is ergodic, suffices to show Δ_g is constant: $\Delta_g(x+u) = \Delta_g(x).$

Proof of special case of Ratner's Theorem. (Similar to proof of joinings theorem.) Assume $U = \operatorname{Stab}_G(\mu)$ is unipotent. We show μ is supported on a single U-orbit. By ergodicity, it suffices to find a U-orbit of positive measure. So suppose all U-orbits have measure 0. For a.e. $x \in \Gamma \backslash G$, $\exists y \approx x$, such that • $y \notin xU$, and • y is in the support of μ . $y_{t'} \approx x_t c$, for some $c \in N_G(U) \ominus U$. We may assume $x_t, y_{t'} \in K$, where $K \cap Kc = \emptyset$. This contradicts the fact that d(K, Kc) > 0. [Actually, we only showed μ is supported on an orbit of $N_G(U)$ (because c = e if $y \in xN_G(U)$), but it is easy to finish from there.]

Some references.

S. G. Dani: Flows on homogeneous spaces: a review. Ergodic theory of Z^d actions (Warwick, 1993–1994), 63–112, London Math. Soc. Lecture Note Ser., 228, Cambridge Univ. Press, Cambridge, 1996.

A. Eskin, G. A. Margulis, and S. Mozes: Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture. *Ann. Math.* (2) 147 (1998), no. 1, 93–141. MR 99a:11043

A. Eskin, S. Mozes, and N. Shah: Unipotent flows and counting lattice points on homogeneous varieties. *Ann. Math.* (2) 143 (1996), no. 2, 253–299. MR 97d:22012

G. A. Margulis, Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory. *Proc. Internat. Cong. Math.*, Kyoto, 1990 (Springer, 1991), pp 193-215.

G. A. Margulis: Oppenheim conjecture. in: M. Atiyah and D. Iagolnitzer, eds., *Fields Medallists' Lectures*, pp. 272– 327. World Sci. Ser. 20th Century Math., 5, World Sci. Publishing, River Edge, NJ, 1997. MR 99e:11046

G. A. Margulis and G. M. Tomanov: Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, *Invent. Math.* 116 (1994) 347–392.

M. Ratner: Strict measure rigidity for unipotent subgroups of solvable groups. *Invent. Math.* 101 (1990) 449–482

M. Ratner: On measure rigidity of unipotent subgroups of semisimple groups. Acta Math. 165 (1990) 229–309

M. Ratner: On Raghunathan's measure conjecture. Ann. Math. 134 (1991) 545–607

M. Ratner: Interactions between ergodic theory, Lie groups, and number theory. *Proc. Internat. Cong. Math.*, Vol. 1, 2 (Zürich, 1994), 157–182, Birkhäuser, Basel, 1995.

M. Ratner: Raghunathan's conjectures for $SL(2, \mathbb{R})$. Israel J. Math. 80 (1992), no. 1-2, 1–31.

M. Ratner: Raghunathan's conjectures for Cartesian products of real and *p*-adic Lie groups. Duke Math. J. 77 (1995), no. 2, 275–382.

D. Witte: Rigidity of some translations on homogeneous spaces. *Invent. Math.* 81 (1985), no. 1, 1–27. MR 87d:22018

D. Witte: Measurable quotients of unipotent translations on homogeneous spaces. *Trans. Amer. Math. Soc.* 345 (1994), no. 2, 577–594. Correction and extension 349 (1997), no. 11, 4685–4688. MR 95a:22005, 98c:22002