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Abstract. Unipotent flows are very well-behaved dynam-

ical systems. In particular, Marina Ratner has shown that

every invariant measure for such a flow is of a nice alge-

braic form. This talk will present some consequences of

this important theorem, and explain a few of the ideas of

the proof. In general, algebraic technicalities will be pushed

to the background as much as possible.

Eg. Let X = torus T2 = R2/Z2.

Any v ∈ R2 defines a flow on T2: ϕt(x) = x + tv

If the slope of v is irrational, it is classical that
Lebesgue is the only invariant measure.

Example. v = (a, b, 0) defines
a flow ϕt on T3 = R3/Z3

and T2 × {0} is invariant.
Lebesgue on T2 × {0} is an invariant measure.

For every v, any ergodic invariant probability mea-
sure for ϕt on T3 is the Lebesgue measure on some
invariant subtorus Tk (0 ≤ k ≤ 3).

Note that R2 is a Lie group.

I.e., it is a group (under vector addition) and a
manifold, and the group operations are smooth.

The subgroup Z2 is closed and discrete.

The quotient space Z2\R2 = T2 is a manifold.

Let G be any Lie group,
and let Γ be a closed, discrete subgroup.

Then Γ\G is a manifold,
a homogeneous space.

It is best if Γ\G is compact.

(More generally, we can allow Γ\G to have finite
volume. We say Γ is a lattice.)

Eg. G = SL2(R) = { 2× 2 real mat’s of det 1 }.
Let Γ = SL2(Z).
Then X = Γ\G has finite vol.

Other choices of Γ
can make Γ\G cpct.

Define u, a:R→ SL2(R) by

ut =
(

1 t
0 1

)
and at =

(
et 0
0 e−t

)
.

Each of these is a homomorphism.

ut is a unipotent one-parameter subgroup.

Define ϕt(x) = xut.

ut = “horocycle flow”
at = “geodesic flow”

The volume on Γ\G is a finite, invariant measure.
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Geometric description of the horocycle flow.

The geodesic flow on T 1
H

2.
γt:T 1

H
2 → T 1

H
2:

Given unit vector −⇀v ∈ T 1
H

2, move it a distance t

along the geodesic it determines.
Geodesic in H2 is a semicircle ⊥ x-axis.

Horocycle in H2 is a circle tangent to x-axis.

−⇀v ∈ T 1
H

2 is tangent to a unique geodesic.

−⇀v ⊥ two horocycles: expanding and contracting.
Move it a distance t along the (contracting) horo-
cycle it determines.

Factors through to flow on unit tangent bundle
T 1M of any surface of constant neg curvature.

Why study unipotent flows?

• Flows on homogeneous spaces are “easy.”

Algebraic tools can probe the structure.
This is particularly effective for unipotent flows.

• Study actions of SLn(R) (n > 2).

Only known C∞ actions are on homog spaces (≈).

SLn(R) has many unipotent elements.

If a single unipotent element acts by translation,
then the whole group acts by translations [Witte].

• Applications in Number Theory.

Oppenheim Criterion [Margulis].

Let Q be real, indefinite, non-degenerate quadratic
form in ≥ 3 variables (e.g., x2 −

√
2xy +

√
3z2).

Then the Z-values of Q are dense in R
unless Q ≈ Z-coefficients.

More careful analysis shows (except in some small
cases) that values of Q are uniformly distributed:

Thm [Eskin-Margulis-Mozes]. Let Q be real, non-
degenerate quadratic form of signature (p, q) with
p ≥ 3 and q ≥ 1

and assume Q �≈ Z-coefficients.
Then ∃λ, ∀a < b,

#
{

v ∈ Zp+q

∣∣∣∣ a < Q(v) < b,
‖v‖ ≤ T

}

∼ λ(b− a)T p−q−2 as T →∞.

In a similar vein, the theorem can also be applied
to obtain asymptotic formulas for the number of
integer points on certain homogeneous varieties
[Eskin-Mozes-Shah].

Thm (Furstenberg). Γ\SL2(R) cpct ⇒ the only
invariant probability measure for ut is the ordinary
volume.

Hence, every ut-orbit is uniformly distributed.
(In contrast, at has many invariant measures.)

Γ\SL2(R) noncpct ⇒ other possibility is
the measure supported on a
closed orbit [Dani].

Main Theorem (Ratner). For unipotent flow on
any homogeneous space G/Γ:
every ergodic invariant probability measure is the
volume on some closed orbit of some subgroup con-
taining ut.

Eg. SL2(Z)\SL2(R) ↪→ SL3(Z)\SL3(R)
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Cor. (Ratner). For unipotent flow on G/Γ,
with Γ a lattice:

the closure of every orbit is a closed orbit of some
subgroup L containing ut.

Also: the L-orbit has finite L-inv meas µ,
and the ut-orbit is unif distrib w.r.t. µ.

The same is true (except uniform distribution) if
{ut} is replaced with any subgroup generated by
unipotent elements.

Proof of Oppenheim Criterion.
• G = SL(3,R), Γ = SL(3,Z).
• Q0(x1, x2, x3) = x2

1 + x2
2 − x2

3.
• H = SO(2, 1) = SO(Q0).

Assume (wolog) signature of Q is (2, 1),
so ∃ g ∈ SL(3,R), Q = λ Q0 ◦ g.

Algebra: there are 2 possibilities for L in the con-
clusion of Ratner’s Theorem: H or G.

Case 1. The orbit Γ\ΓgH has finite measure.
Then Γ ∩ gHg−1 is a lattice in gHg−1 = SO(Q),

so Q ≈ Z-coefficients.

Case 2. ΓgH is dense in G.
Q(Z3) = Q0(Z3g) (defn of g)

= Q0(Z3Γg) (Z3Γ = Z3)
= Q0(Z3ΓgH) (defn of H)
≈ Q0(R3) (assumption of this case)
= R.

Cor (Ratner Rigidity Theorem). Let ϕt, ϕ
′
t be

unip flows on finite-vol Γ\SL2(R), Γ′\SL2(R).
If ϕt

∼= ϕ′t measurably, then Γ = Γ′ (up to conj).

I.e., measurably isomorphic ⇒ obvious even to an
algebraist that they are isomorphic.

Cor (Witte). True for any Lie group G in the
place of SL2(R).

(In fact, even for Γ\G and Γ′\G′.)

(Contrast: all geodesic flows are isomorphic.)

Proof. Let ψ: (ϕt, X)→ (ϕ′t, X
′) be an iso.

graph(ψ) ⊂ X ×X ′

supports ϕt × ϕ′t-inv measure.

⇒ graph(ψ) is a subgroup (≈).

⇒ ψ is a group homomorphism (a.e.).

Quotients. Let (ϕt, X) and (ϕ′t, X
′) be flows.

If ∃ ψ:X → X ′ with ψ
(
ϕt(x)

)
= ϕ′t

(
ψ(x)

)
,

then (ϕ′t, X
′) is a quotient of (ϕt, X).

Cor (Ratner). Every quotient of
(
ut,Γ\SL2(R)

)
is isomorphic to a unipotent flow

(
ut,Γ′\SL2(R)

)
.

Cor (Witte). Every quotient of any unipotent flow
on any Γ\G is a double-coset space Γ′\G/K.

Geodesic flow: at =
(

et 0
0 e−t

)

a−tqat =
(

α βe−2t

γe2t δ

)

Points can move apart at exponential speed
transverse to the orbits.
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ut =
(

1 t
0 1

)
and at =

(
et 0
0 e−t

)

d(x, xq) = ||q||. d(xut, xqut) = ||u−tqut||.

u−tqut =
(

α− γt β + (α− δ)t− γt2

γ δ + γt

)

Points move apart at polynomial speed.

∃ε > 0 such that if d(xt, yt) < 1 for t ∈ [k, k + l],
then d(xt, yt) < 1.1 for t ∈

[
k, k + (1 + ε)l

]
.

Shearing. Fastest motion is parallel to the orbits.

Choose u ∈ g with exp(tu) = ut,
q ∈ g with expq = q.

u−tqut = (Adut)q
= exp

(
ad(tu)

)
q

= q ± t[q, u]± 1
2 t2[q, u, u]± 1

6 t3[q, u, u]± · · ·
The largest term has the highest power of t:

the last nonzero term (adu)kq.
Then [(adu)kq, u] = 0

(because the next term does not appear)
so (ad u)kq is in the centralizer of ut.

The direction of fastest relative motion is along
the centralizer of ut.

Similarly: the fastest transverse motion is along
the normalizer.

Fastest transverse motion: last term not in u,
so [(adu)kq, u] ∈ u.

Therefore (adu)kq normalizes u.

Thm (Ratner). Every nontrivial quotient of(
ut,Γ\SL2(R)

)
has finite fibers.

I.e., ψ: Γ\SL2(R)→ X ′ with ψ(xut) = ϕ′t(ψ(x))
⇒ ψ−1(z) is finite a.e.

Show: if ψ−1(x′) infinite, then ϕ′1 has a fixed pt.

Suppose x ≈ y with ψ(x) = ψ(y).
Assume ψ uniformly continuous [Lusin’s Thm].

Flow along the orbits until d(xt, yt) = 1.

Then yt ≈ ϕ1(xt).

So ψ(yt) ≈ ψ(ϕ1(xt)) = ϕ′1(ψ(xt)) = ϕ′1(ψ(yt)).

d(ϕ′1(zk), zk) < 1/k.

Subsequence converges to a fixed point.

Thm (Ratner). Every nontrivial quotient of(
ut,Γ\SL2(R)

)
has finite fibers.

Cor (Ratner). Many horocycle flows are prime.
(I.e., they have no nontrivial, proper quotients.)

Thm (Ratner). Many horocycle flows have mini-
mal self joinings.

Joining: An invariant measure on X × X ′ that
projects to the given measures on X and X ′.

Thm (Ratner). Non-product, ergodic joinings of
horocycle flows have finite fibers.

(µ is concentrated on a set with only finitely many
points from each horizontal or vertical line.)
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Thm (Ratner). Non-product, ergodic joinings of
horocycle flows have finite fibers.

(µ is concentrated on a set with only finitely many
points from each horizontal or vertical line.)

Take (x, a), (x, b) ∈ X ×X.

Suppose a ≈ b. at ≈ φ1(bt).

(x, a)t = (xt, at) ≈
(
xt, φ1(bt)

)
= v1

(
(x, b)t

)
.

If µ is vt-invariant, then µ = product measure.
So (v1)∗(µ) �= µ, but (v1)∗(µ) is φt-invariant.
Therefore (v1)∗(µ) ⊥ µ.

∃K ⊂ X ×X with µ(K) > 0.9, d
(
K, v1(K)

)
> 0.

Claim. K intersects each vert line in a finite set.

If not, ∃(x, a), (x, b) ∈ K very close together.
(x, a)t, (x, b)t ∈ K ⇒ v1(x, b)t ∈ v1(K).

Since (x, a)t ≈ v1

(
(x, b)t

)
, then d

(
K, v1(K)

)
= 0.

Direct proof of the rigidity theorem.

Defn. Suppose ψ: Γ\G→ Λ\H, g ∈ G, g̃ ∈ H.
If ψ(Γxg) = ψ(Γx) · g̃ for a.e. x ∈ G,

then ψ is affine for g (via g̃).

Thm. u, ũ ergodic unipotent on Γ\G and Λ\H,
ψ: Γ\G→ Λ\H is measure-preserving.

ψ affine for u via ũ ⇒ ψ affine for each g ∈ G.
[This implies ψ is an affine map (a.e.).]

Suppose G and H are abelian (and Γ = Λ = e).

Fix g ∈ G. Define ∆g:G→ H by
ψ(x + g) = ψ(x) + ∆g(s).

We wish to show ∆g is constant (a.e.):
set g̃ = ∆g.

Since u is ergodic, suffices to show ∆g is constant:
∆g(x + u) = ∆g(x).

ψ(x) + ∆g(x) = ψ(x + g)
= ψ(x + u + g − u)
= ψ

(
(x + u) + g

)
− ũ

= ψ(x + u) + ∆g(x + u)− ũ

= ψ(x) + ũ + ∆g(x + u)− ũ

= ψ(x) + ∆g(x + u).

Same argument works in general if:

• g ∈ CG(u),
• ∆g(x) ∈ CG(ũ),
• CG(ũ) acts freely on Λ\H.

Key Fact (Ratner). ψ maps CG(u)◦-orbits into
CH(ũ)◦-orbits.

Proof. Polynomial divergence of orbits (+ Lusin).

Proof of special case of Ratner’s Theorem.
(Similar to proof of joinings theorem.)

Assume U = StabG(µ) is unipotent.

We show µ is supported on a single U -orbit.
By ergodicity, it suffices to find a U -orbit of posi-
tive measure.

So suppose all U -orbits have measure 0.

For a.e. x ∈ Γ\G, ∃ y ≈ x, such that
• y /∈ xU , and
• y is in the support of µ.

yt′ ≈ xtc, for some c ∈ NG(U)� U .

We may assume xt, yt′ ∈ K, where K ∩Kc = ∅.
This contradicts the fact that d(K, Kc) > 0.

[Actually, we only showed µ is supported on an
orbit of NG(U) (because c = e if y ∈ xNG(U)),
but it is easy to finish from there.]
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