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Abstract

The vertex set of the kth cartesian power of a directed cy-
cle of length m can be naturally identified with the abelian

group (Zm)k. For any two elements u = (u1, . . . , uk) and

v = (v1, . . . , vk) of (Zm)k, it is easy to see that if there is
a hamiltonian path from u to v, then

u1 + · · · + uk ≡ v1 + · · · + vk + 1 (mod m).
We prove the converse, unless k = 2 and m is odd. This is
joint work with David Austin and Heather Gavlas. A sim-
ilar result is conjectured for cartesian products of directed
cycles that are not assumed to be of equal lengths.

Notation. Circulant graph Circ(n;S):

• vertex set = Zn (integers modulo n)

• edge v v ± s for s ∈ S

Eg. Circ(12; 3, 4, 6)
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Exer. Every (connected) circulant graph has a

hamiltonian cycle.

Thm (Chen-Quimpo).

Circulant grfs of deg ≥ 3 are hamiltonian conn’d

(unless they are bipartite — then laceable).

I.e. ∀ vertices u, v, ∃ ham path from u to v.

Similar result for circulant digraphs?

Notation. Circulant digraph
−−→
Circ(n;S):

• vertex set = Zn (integers modulo n)

• edge v → v + s for s ∈ S

Rem. d+(
−→
X) = 1 ⇒ −→

X is a directed cycle

⇒ −→
X is hamiltonian.

Eg.
−−→
Circ(12; 3, 4) is not hamiltonian.
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Proof. Spse 0 travels by 4.

⇒ 1 travels by 4.

⇒ 2 travels by 4.

⇒ · · ·
Every vertex travels by 4.

0 → 4 → 8 → 0 →←

Thm (Rankin, 1948).
−−→
Circ(n; a, b) has ham cyc

⇔ number-theoretic condition on a, b, n.

Now consider d+(
−→
X) ≥ 3.

Eg.
−−→
Circ(12; 3, 4, 6) is not hamiltonian.

Thm (Locke-Witte). 6 ∃ hamiltonian cycle in
−−→
Circ(12k; 6k − 3, 6k − 2, 6k).

Thm (Locke-Witte). 6 ∃ hamiltonian cycle in
−−→
Circ(2k; a, b, b + k) ⇔ gcd(a, b, k) = 1 and . . .

Rem. 1st thm: antipodal verts are joined by edge.

2nd thm: vert adjacent to 2 antipodal verts.

Rem.
−−→
Circ(n; a, b, c) ∼= −−→

Circ(n;xa, xb, xc)

if gcd(x, n) = 1.

Ques. Do the two thms (and the remark) give all

the nonham, circulant digraphs of outdegree 3?

Computer search: yes for less than 100 vertices.

Problem. Show d+(
−→
X ) ≥ 4 ⇒ −→

X has ham cyc.
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Cartesian products of directed cycles.

Notation. Cartesian product X × Y :

• vertex set V (X) × V (Y )

• edge

◦ (x, y) (x′, y) if x x′

◦ (x, y) (x, y′) if y y′.

Eg. Cm × Cn

Exer. Cartesian product of (undirected) cycles is

hamiltonian.

Thm (Chen-Quimpo).

Cm1 × · · · × Cmr is hamiltonian connected

unless r = 1

or each mi is even (in which case, laceable).

Would like a similar result for the directed case.

First step: show
−→
C m1 ×· · ·×−→

C mr is hamiltonian.

Thm (Rankin). ∃ ham cyc in
−→
C m ×−→

C n

⇔ ∃ rel. prime s, t ∈ Z+, sm + tn = mn.

Thm (Curran-Witte). r > 2 ⇒ hamiltonian.

Ques. Which vertices are joined by a ham path?

−→
X =

−→
C m1 × · · · × −→

C mr

Rem. Identify set of vertices with Zm1×· · ·×Zmr .

edge (u1, . . . , ur) → (v1, . . . , vr)

⇒ v1 + · · ·+ vr = u1 + · · · + ur + 1

(mod gcd(m1, . . . ,mr))

∃ path of length ` from u to v

⇒
∑

vi ≡
∑

ui + `

∃ ham path from u to v

⇒
∑

vi ≡
∑

ui + (m1m2 · · ·mr − 1)

≡
∑

ui − 1.

Converse should be true:

Conj. Assume r ≥ 3.

∃ ham path from u to v

⇔
∑

ui ≡ 1+
∑

vi (mod gcd(m1, . . . ,mr))

Rem. If gcd(m1, . . . ,mr) = 1 (and r ≥ 3), then

any two vertices should be joined by a ham path.

Eg.
−→
C m ×−→

C m

Eg.
−→
C 9 ×

−→
C 6
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Conj. ∃ ham path from u to v

if
∑

ui ≡ 1 +
∑

vi (mod gcd(m1, . . . ,mr))

Thm (Austin-Gavlas-Witte). Conjecture is true

if m1 = m2 = · · · = mr (and r ≥ 3).

Proof. Let m = m1 (= m2 = · · · = mr). Assume

• m is even, (!!!)

• r = 3, and

• u = 0.

Notation. x = (1, 0, 0), y = (0, 1, 0), z = (0, 0, 1).

D = { δ ∈ (Zm)3 |
∑

δi ≡ 0 mod m }
−→
∆ =

−−→
Cay(D; y − x, z − x).

Note that
∑

vi ≡ −1 (mod m), so v + x ∈ D.

Lem. ∃ ham cyc H in
−→
∆,

s.t. dH (0, v + x) is even.

Prop. ∃ such ham cyc in
−→
∆

⇒ ∃ ham path from 0 to v in (
−→
C m)3.

Cayley digraphs. Generalize circulant graphs to

use noncyclic groups:

Defn.
−−→
Cay(G; S) for subset S of abelian group G:

• vertex set = G

• edge g → g + s for s ∈ S.

Eg.
−−→
Circ(n;S) =

−−→
Cay(Zn;S).

Eg. (
−→
C m)3 ∼= −−→

Cay
(
(Zm)3;x, y, z

)
.

Prop. ∃ ham cyc H in
−→
∆, with dH (0, v+x) even

⇒ ∃ ham path from 0 to v in (
−→
C m)3.

Proof. Say dH(0, v + x) = 2k.

Let a = (1, 0) and b = (1, 1) in Zm × Zm2 .

−−→
Cay(Zm × Zm2 ; a, b) has a hamiltonian path

from (0, 0) to (−1, 2k).

Suffices to find φ: Zm × Zm2 → (Zm)3 such that

• φ(−1, 2k) = v and

• φ embeds
−−→
Cay(Zm × Zm2 ; a, b).

Let H = h0, . . . , hm2 with h0 = hm2 = 0

so h2k = v + x.

Define φ(i, j) = ix + hj .

• φ(−1, 2k) = −x + h2k = v

• φ(v + a) − φ(v) = x ∈ {x, y, z}
• φ(v + b) − φ(v) = x + (cj+1 − cj)

∈ x+ {y− x, z −x} = {y, z} ⊂ {x, y, z}.

Ham path (0, 0) → (−1, 2k)

in
−−→
Cay(Zm × Zm2 ; a, b):

(
(am−2, b2)k, (am−2, b, a)m2−2k−1,

(am−2, b2)k, am−2, b
)
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Notation. x = (1, 0, 0), y = (0, 1, 0), z = (0, 0, 1).

• D = { δ ∈ (Zm)3 |
∑

δi ≡ 0 mod m }
• −→

∆ =
−−→
Cay(D; y − x, z − x).

Lem. ∃ ham cyc H in
−→
∆, with dH(0, v+x) even

(or dH(0, v + y) even or dH(0, v + z) even).

Proof. m is even, and v1+v2+v3 ≡ −1 (mod m)

⇒ some vi is odd.

Wolog assume v1 is odd.

Define

D0 = { (d1, d2, d3) ∈ D | d1 is even }
D1 = { (d1, d2, d3) ∈ D | d1 is odd }

Then D0 ∪ D1 is a bipartition of
−→
∆.

• (0, 0, 0) ∈ D0

• v + x = (odd, ?, ?) + x = (even, ?, ?) ∈ D0

⇒ dH(0, v + x) is even for every cycle in
−→
∆.
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