Hamiltonian paths in cartesian powers of directed cycles

Dave Witte

Department of Mathematics Oklahoma State University Stillwater, OK 74078

Abstract

The vertex set of the k^{th} cartesian power of a directed cycle of length m can be naturally identified with the abelian group $(\mathbb{Z}_m)^k$. For any two elements $u = (u_1, \ldots, u_k)$ and $v = (v_1, \ldots, v_k)$ of $(\mathbb{Z}_m)^k$, it is easy to see that if there is a hamiltonian path from u to v, then

 $u_1 + \cdots + u_k \equiv v_1 + \cdots + v_k + 1 \pmod{m}$. We prove the converse, unless k = 2 and m is odd. This is joint work with David Austin and Heather Gavlas. A similar result is conjectured for cartesian products of directed cycles that are not assumed to be of equal lengths.

Notation. Circulant digraph $\overrightarrow{\text{Circ}}(n; S)$: • vertex set = \mathbb{Z}_n (integers modulo n) • edge $v \to v + s$ for $s \in S$ Rem. $d^+(\overrightarrow{X}) = 1 \Rightarrow \overrightarrow{X}$ is a directed cycle

Similar result for circulant **di**graphs?

 $\Rightarrow \vec{X}$ is hamiltonian.

Eq. $\overrightarrow{\text{Circ}}(12;3,4)$ is **not** hamiltonian.

Proof. Spse 0 travels by 4.

 \Rightarrow 1 travels by 4.

 $\Rightarrow 2$ travels by 4.

 $\Rightarrow \cdots$

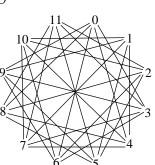
Every vertex travels by 4.

 $0 \rightarrow 4 \rightarrow 8 \rightarrow 0$

Thm (Rankin, 1948). $\overrightarrow{\text{Circ}}(n; a, b)$ has ham cyc \Leftrightarrow number-theoretic condition on a, b, n.

Notation. Circulant graph Circ(n; S):

- vertex set = \mathbb{Z}_n (integers modulo n)
- edge $v v \pm s$ for $s \in S$
- *Eg.* Circ(12; 3, 4, 6)



Exer. Every (connected) circulant graph has a hamiltonian cycle.

Thm (Chen-Quimpo).

Circulant grfs of deg ≥ 3 are hamiltonian conn'd (unless they are bipartite — then laceable).
I.e. ∀ vertices u, v, ∃ ham path from u to v.

Now consider $d^+(\vec{X}) \ge 3$.

Eq. $\overrightarrow{\text{Circ}}(12; 3, 4, 6)$ is **not** hamiltonian.

Thm (Locke-Witte). $\not\exists$ hamiltonian cycle in $\overrightarrow{\text{Circ}}(12k; 6k - 3, 6k - 2, 6k).$

Thm (Locke-Witte). $\not\exists$ hamiltonian cycle in $\overrightarrow{\text{Circ}}(2k; a, b, b+k) \Leftrightarrow \gcd(a, b, k) = 1 \text{ and } \dots$

Rem. 1st thm: antipodal verts are joined by edge. 2nd thm: vert adjacent to 2 antipodal verts.

Rem. $\overrightarrow{\operatorname{Circ}}(n; a, b, c) \cong \overrightarrow{\operatorname{Circ}}(n; xa, xb, xc)$ if $\gcd(x, n) = 1$.

Ques. Do the two thms (and the remark) give all the nonham, circulant digraphs of outdegree 3?

Computer search: yes for less than 100 vertices.

Problem. Show $d^+(\vec{X}) \ge 4 \Rightarrow \vec{X}$ has ham cyc.

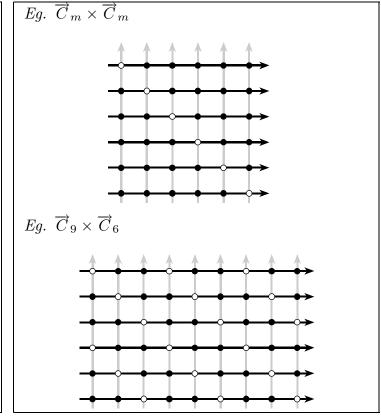
Notation. Cartesian product $X \times Y$: • vertex set $V(X) \times V(Y)$ • edge • (x, y) - (x', y) if x - x'• (x, y) - (x, y') if y - y'. Eg. $C_m \times C_n$ The set of the

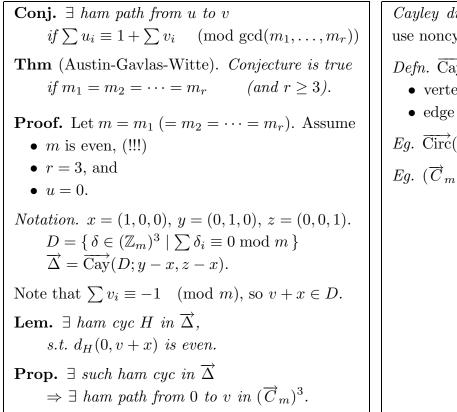
Cartesian products of directed cycles.

Thm (Chen-Quimpo). $C_{m_1} \times \cdots \times C_{m_r}$ is hamiltonian connected unless r = 1or each m_i is even (in which case, laceable). Would like a similar result for the directed case. First step: show $\overrightarrow{C}_{m_1} \times \cdots \times \overrightarrow{C}_{m_r}$ is hamiltonian. **Thm** (Rankin). \exists ham cyc in $\overrightarrow{C}_m \times \overrightarrow{C}_n$ $\Leftrightarrow \exists$ rel. prime $s, t \in \mathbb{Z}^+$, sm + tn = mn. **Thm** (Curran-Witte). $r > 2 \Rightarrow$ hamiltonian. **Ques.** Which vertices are joined by a ham path?

 $\overrightarrow{X} = \overrightarrow{C}_{m_1} \times \cdots \times \overrightarrow{C}_{m_r}$ Rem. Identify set of vertices with $\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_r}$. edge $(u_1, \dots, u_r) \to (v_1, \dots, v_r)$ $\Rightarrow v_1 + \dots + v_r = u_1 + \dots + u_r + 1$ $(\text{mod gcd}(m_1, \dots, m_r))$ \exists path of length ℓ from u to v $\Rightarrow \sum v_i \equiv \sum u_i + \ell$ \exists ham path from u to v $\Rightarrow \sum v_i \equiv \sum u_i + (m_1 m_2 \cdots m_r - 1)$ $\equiv \sum u_i - 1$. Converse should be true: **Conj.** Assume $r \ge 3$. \exists ham path from u to v $\Leftrightarrow \sum u_i \equiv 1 + \sum v_i \pmod{(\text{mod gcd}(m_1, \dots, m_r))}$ Rem. If $\text{gcd}(m_1, \dots, m_r) = 1 \pmod{r} \ge 3$, then

any two vertices should be joined by a ham path.





Cayley digraphs. Generalize circulant graphs to use noncyclic groups:

Defn. $\overrightarrow{Cay}(G; S)$ for subset S of abelian group G:

- vertex set = G
- edge $g \to g + s$ for $s \in S$.
- Eq. $\overrightarrow{\operatorname{Circ}}(n; S) = \overrightarrow{\operatorname{Cay}}(\mathbb{Z}_n; S).$

Eq.
$$(\overrightarrow{C}_m)^3 \cong \overrightarrow{\operatorname{Cay}}((\mathbb{Z}_m)^3; x, y, z)$$

Prop. \exists ham cyc H in $\overrightarrow{\Delta}$, with $d_H(0, v+x)$ even $\Rightarrow \exists ham path from 0 to v in (\overrightarrow{C}_m)^3.$ Proof. Say $d_H(0, v + x) = 2k$. Let a = (1, 0) and b = (1, 1) in $\mathbb{Z}_m \times \mathbb{Z}_{m^2}$. $\overline{\operatorname{Cay}}(\mathbb{Z}_m \times \mathbb{Z}_{m^2}; a, b)$ has a hamiltonian path from (0,0) to (-1,2k). Suffices to find $\phi: \mathbb{Z}_m \times \mathbb{Z}_{m^2} \to (\mathbb{Z}_m)^3$ such that • $\phi(-1, 2k) = v$ and • ϕ embeds $\overrightarrow{\operatorname{Cay}}(\mathbb{Z}_m \times \mathbb{Z}_{m^2}; a, b)$. with $h_0 = h_{m^2} = 0$ Let $H = h_0, ..., h_{m^2}$ so $h_{2k} = v + x$. Define $\phi(i, j) = ix + h_j$. • $\phi(-1,2k) = -x + h_{2k} = v$ • $\phi(v+a) - \phi(v) = x \in \{x, y, z\}$ • $\phi(v+b) - \phi(v) = x + (c_{i+1} - c_i)$

 $\in x + \{y - x, z - x\} = \{y, z\} \subset \{x, y, z\}.$

Ham path $(0,0) \to (-1,2k)$ in $\overrightarrow{Cay}(\mathbb{Z}_m \times \mathbb{Z}_{m^2}; a, b)$:

Notation. $x = (1, 0, 0), y = (0, 1, 0), z = (0, 0, 1).$	References
• $D = \{ \delta \in (\mathbb{Z}_m)^3 \mid \sum \delta_i \equiv 0 \mod m \}$ • $\overrightarrow{\Delta} = \overrightarrow{Cay}(D; y - x, z - x).$	D. Austin, H. Gavlas, and D. Witte: Hamiltonian paths in Cartesian powers of directed cycles. <i>Graphs and Combinatorics</i> (to appear).
Lem. \exists ham cyc H in $\overrightarrow{\Delta}$, with $d_H(0, v+x)$ even (or $d_H(0, v+y)$ even or $d_H(0, v+z)$ even).	C.C. Chen and N.F. Quimpo, On strongly hamiltonian abelian group graphs, in: K.L. McAvaney, ed., <i>Combina-</i> <i>torial Mathematics VIII</i> , Lecture Notes in Mathematics, Vol. 884 (Springer-Verlag, Berlin, 1981), 23–34.
Proof. m is even, and $v_1+v_2+v_3 \equiv -1 \pmod{m}$ \Rightarrow some v_i is odd.	S.J. Curran and J.A. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs–a survey, <i>Discrete Math.</i> , 156 (1996), no. 1–3, 1–18.
Wolog assume v_1 is odd. Define	S.J. Curran and D. Witte, Hamilton paths in cartesian products of directed cycles, Ann. Discrete Math. 27 (1985), 35–74.
$D_0 = \{ (d_1, d_2, d_3) \in D \mid d_1 \text{ is even} \}$ $D_1 = \{ (d_1, d_2, d_3) \in D \mid d_1 \text{ is odd} \}$	S.C. Locke and D. Witte, On non-hamiltonian circulant digraphs of outdegree three, J. Graph Th. 30 (1999) 319–331.
Then $D_0 \cup D_1$ is a bipartition of $\overrightarrow{\Delta}$. • $(0,0,0) \in D_0$	R.A. Rankin, A campanological problem in group theory, <i>Proc. Camb. Phil. Soc.</i> 44 (1948), 17–25.
• $(0, 0, 0) \in D_0$ • $v + x = (\text{odd}, ?, ?) + x = (\text{even}, ?, ?) \in D_0$ $\Rightarrow d_H(0, v + x) \text{ is even for every cycle in } \overrightarrow{\Delta}.$	W. Trotter and P. Erdös, When the cartesian product of directed cycles is hamiltonian, J. Graph Theory 2 (1978), 137–142.
	D. Witte and J.A. Gallian, A survey: Hamiltonian cycles in Cayley graphs, <i>Discrete Math.</i> 51 (1984), no. 3, 293–304.

