Hamiltonian paths in solvable Cayley digraphs

Dave Witte Morris

University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Abstract. Cayley graphs are very nice graphs that are constructed from finite groups. If the group is abelian, then it is easy to show that the graph has a hamiltonian cycle. It is conjectured that the nonabelian Cayley graphs also have hamiltonian cycles.

We will discuss a few recent results (both positive and negative) on the related problem where the graph is replaced by a directed graph, and the finite group is assumed to be solvable (which means it is not too far from being abelian).

Recall

Cayley graph $Cay(\mathbb{Z}_{12};3,4)$

vertices: elements of \mathbb{Z}_{12} edges: $v - v \pm 3 \& v - v \pm 4$

Conjecture: Cay(G; S) has ham cyc. (True if G abel.)

Definition

Cayley digraph $\overrightarrow{Cay}(\mathbb{Z}_{12}; 3, 4)$ vertices: elements of \mathbb{Z}_{12}

directed edges:

$$v \rightarrow v + 3 \& v \rightarrow v + 4$$

Fact: $\overrightarrow{Cay}(\mathbb{Z}_{12}; 3, 4)$ does *not* have ham cyc.

- $\not\equiv$ ham path in $\overrightarrow{Cay}(\mathbb{Z}_k \ltimes \mathbb{Z}_p; a, b)$ if ...
- G solvable $\Rightarrow \exists$ ham path in $\overrightarrow{Cav}(G;S)$
- G abelian $\Rightarrow \exists$ ham path in $\overrightarrow{Cav}(G:S)$

 $abelian \subset nilpotent \subset solvable$ *Nilpotent:* $G = P_1 \times P_2 \times \cdots \times P_r$, $|P_i| = p_i^{n_i}$

Question: *G* nilpotent $\stackrel{?}{\Rightarrow}$ \exists ham path in $\overrightarrow{Cay}(G;S)$

Theorem (Morris)

Assume G nilpotent.

- [1986] $|G| = p^n \implies \exists ham \ cycle \ in \ \overrightarrow{Cay}(G; S)$.
- [2011] \exists ham path in $\overrightarrow{Cay}(G; a, b)$

Cayley graph $Cay(\mathbb{Z}_{12}; 3, 4)$

vertices: elements of \mathbb{Z}_{12} edges: $v - v \pm 3 \& v - v \pm 4$

hamiltonian

cycle

G abelian $\Rightarrow \forall S$, Cay(G; S) has a hamiltonian cycle (if connected, i.e., if $\langle S \rangle = G$).

Fact: $\overrightarrow{Cay}(\mathbb{Z}_{12}; 3, 4)$ does *not* have ham cyc.

Suppose H is a ham cycle. Say vertex x travels by 4. Then x + 1 cannot travel by 3 x+1

(collision at x + 4).

So x + 1 must travel by 4. By induction, every vertex travels by $4. \rightarrow \leftarrow$

So no vertex travels by 4. All travel by 3. $\rightarrow \leftarrow$

Problem: When does $\overrightarrow{Cay}(\mathbb{Z}_n; S)$ have ham cyc?

Exercise: *G* abelian $\Rightarrow \overrightarrow{Cay}(G; S)$ has a ham *path*.

Unfortunately, $\exists \overrightarrow{Cay}(G;S)$ with no ham path. [Milnor]

Conjecture

 $\forall G, \forall S, \operatorname{Cay}(G; S)$ has a hamiltonian cycle.

(We always assume $\langle S \rangle = G$ and $S \neq \emptyset$.)

Exercise: True if G is abelian (induct on #S).

My work in combinatorics proves other special cases.

Conjecture is true if |G| is "small".

E.g., p, 2p, 3p, ..., 31p, (not 24p) p^2 , $2p^2$, $3p^2$, $4p^2$

[Kutnar-Marušič-Morris²-Šparl (Curran, Morris², Ghaderpour) 2011]

Work in progress

Show Cay(G; S) has a ham cyc if $[G,G] \cong \mathbb{Z}_{pq}$ (with p, q prime).

[Marušič, Durnberger, Keating-Witte ~1982 — Ghaderpour, Morris 2012]

Exercise (J. Milnor?, ≈ 1975 ?)

Cay(G; a, b) no ham path

if |a| = 2, |b| = 3, and $|ab^2| < |G|/9$.

Example

No ham path in $\overrightarrow{Cay}(\mathbb{Z}_6 \ltimes \mathbb{Z}_p; (3,0), (2,1))$

if p > 9 and $p \equiv 1 \pmod{6}$

Remark: These are on *solvable* groups, so solvable Cayley digs need not have ham paths.

I constructed other examples on $\mathbb{Z}_k \ltimes \mathbb{Z}_p$. (in prep)

Theorem (Morris, 2011)

G nilpotent $\Rightarrow \exists$ ham path in $\overrightarrow{Cay}(G; a, b)$.

Idea of proof.

Let $H = \langle a^{-1}b \rangle$. ("arc-forcing subgroup")

G nilpotent $\Rightarrow H \triangleleft H_1 \triangleleft H_2 \triangleleft \cdots \triangleleft H_n \triangleleft G$. Assume $H_n = H$. I.e., $H \triangleleft G$.

G/H gen'd by a, so (a^k) is ham cyc in $\overrightarrow{Cay}(G/H;S)$. Then $H = \langle a^k, a^k(a^{-1}b) \rangle = \langle a^{k-1}S \rangle$.

 $H \text{ abel } \Rightarrow \overrightarrow{\text{Cay}}(H; a^{k-1}S) \text{ has ham path } (a^{k-1}s_i)_{i=1}^m.$

Ham path in $\overrightarrow{\text{Cay}}(G; S)$ is $(a, a, ..., a, s_i)_{i=1}^{m+1} \sharp$.

K. Kutnar et al.: Hamiltonian cycles in Cayley graphs whose order has few prime factors, *Ars Math. Contemp.* 5 (2012), no. 1, 27-71.

http://amc.imfm.si/index.php/amc/article/ view/177

D. W. Morris: 2-generated Cayley digraphs on nilpotent groups have hamiltonian paths, Contrib. Discrete Math. 7 (2012), no. 1, 41-47. http://cdm.ucalgarv.ca/cdm/index.php/cdm/ article/view/299

D. W. Morris: Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian (preprint). http://arxiv.org/abs/1205.0087