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Abstract. For every generating set S of any finite group G,
there is a corresponding Cayley graph Cay(G;S). It was
conjectured in the early 1970’s that Cay(G;S) always has a
hamiltonian cycle, but there has been very little progress on
this problem. Joint work with Kirsten Wilk has established
the conjecture in the special case where the order of G is kp,
with k < 48 and p prime. This was not previously known for
values of k in the set {24, 32, 36,40,42,45}.

Cayley graph
Cay(Zy ® Zn; {+(1,0),+(0,1)})

vertices: elements of Z,, ® Z,,
edges: v —v = (1,0)
and v —v = (0,1)

has hamiltonian cycle

Defn. Cay(G;S) for group G and S < G with § = §!

vertices = elt’'sof G edgev —vsforv e G,seS
(assume connected, i.e., (S) = G)

Exercise

G abelian = VS, Cay(G;S) has a hamiltonian cycle.

Exercise

G abelian = VS, Cay(G;S) has a hamiltonian cycle.

Open question (~1970)

iEvery connected Cayley graph has a hamiltonian cycle?

Recall. commutator cr _ ( gpg-1p-1| g h e G).

subgroup

G abelian & G’ = {e} < |G| =1.

Theorem (MarusSi¢, Durnberger, Keating-Witte, 1985)

Cay(G;S) has a ham cycle if |G'| = p (prime).

Work in progress. 3 ham cyc if |G'| = pq. v +a

v G nilpotent v |G| odd vp =2
[E. Ghaderpour] [D. Morris] [D. Morris]
& D. Morris

Open question (~1970)
;Every connected Cayley graph has a hamiltonian cycle?

Cay(G;S) has ham cycle if |G| = kp
with p prime and 24 +k < 32.
[Marusi¢, Kutnar, Sparl, Morris?, Curran,
Ghaderpour, Jungreis-Friedman (~1990)]

Theorem (D.Morris & K. Wilk, 2018)

Cay(G;S) has ham cycle if |G| = kp with k < 48.

Theorem (D.Morris & K. Wilk, 2018+)
Cay(G;S) has ham cycle if |G| = kp with k < 48.

Theorem (D.Morris & K. Wilk, 2018+)

Cay(G;S) has ham cycle if |G| = kp with k < 48.

For fixed p:
@ only finitely many values of kp (1 < k < 48)
@ only finitely many groups G of order kp:
gap has a list (e.g., order less than 1024)
@ only finitely many Cayley graphs of G:
gap code in Brandon Fuller’s thesis
(irredundant S up to Aut(G))
(feasible up to order a few hundred)
Find ham cyc in each one by computer (LKH).
For ~100 vertices, typically less than a second.
(LKH can be applied to graphs with tens of thousands of vertices)

Computer (LKH) deals with any finite set of primes
SO we may assume p is large: p > k.

Example (direct product)

Take any group_@ of order k.

Then G = 7, x G is a group of order kp:
(z1,hy) * (z22,h2) = (21 + 22, h1h?)

Example (semidirect product)

Choose homomorphism T: G — Z;.
Then G = 7, X G is a group of order kp:

(z1,h1) * (z2,hp) = (z1 + T(h1) 22, h1hy)




Example (semidirect product)

|G| = k and homomorphism T: G — Z3,.

Then G = 7, X+ G is a group of order kp:
(z1,h1) * (z2,h2) = (z1 + T(h1) 22, h1hy)

Lemma (well known)

Every grp of order kp is a semidirect prod. (p > k)

Sylow’s Theorem

@ G has a subgroup Z, of order p
@ # conjugates of Z, is = 1(mod p) (& divides kp)

So # conjugates = 1. Therefore 7, < G.
Schur-Zassenhaus Theorem
N <G, gcd (IN],|G/N|) =1 = G = N X (G/N)
(For N = Z,: H*(G/Zp,Zp) = 0.)

Theorem (D.Morris & K. Wilk, 2018+)

Cay(G;S) has ham cycle if |G| = kp with k < 48.

oo possibilities for Cay(G;S) (ordgr ij)
but only finitely many for Cay(G;S). (order k)
Lift hamiltonian cycles in Cay(G;S) to Cay(G;S).

Recall v —vs for s € S.

Ham cyc = list (s1, ..., sp) of elements of S such that
e i1’31 3—2>5132 i3>.S‘1S2$3 H ﬁtSlSz- - Sn

is list of all elements of G (with s152 - - - s, = e).

Given Cay(G;S),

let C = (51,...,5,) be a ham cyc in Cay(G;S).
Thens1S; -~ Sp =€, S0 TtsC = $152 - - - Sp € Zyp.

If tgC + 0, then Cay(G; S) has a ham cyc.

Proof. Let z = 1r5C.

s s S Sn— .
e=g1=g2= ... = gn1 hits cosets of Z,
Sn S1 52 S3 Sn-1
- Z—->2zZd1—> 249y — ... — Zgn-1

M2 229 2229, 2N 229,
S ) s S N Sn—
2 op-1 28 zp—lgl =2} Zp_lgz = i zp_lgn_l

2P = ¢ hits all elements of G

Given Cay(G;S),

let C = (51,...,5,) be a ham cyc in Cay(G;S).
ThensiS; - - Sp =€, S0 TtsC = $152 - - - Sp € Zyp.

If tC + 0, then Cay(G; S) has a ham cyc.

Let’s assume G = Z, X G.

Corollary

S =1{51,...,5}. Hamcycs Cy,...,C, inCay(G;S).
If p t det [#gfj], then Cay(G;S) has a ham cyc.

Corollary
S=1{s74...,5: . Ham cycs Cy, ..., Cy in Cay(G;S).
If p t det[#5,C;], then Cay(G;S) has a ham cyc.

Example
Cay(G;S) = Cay(Z3 x Z3; {*e1, xez}).

o Ci = (ez,e2,e1,e1,—€2,—€1,—€2,€1,€1)
#,C1=2-1+2=3,
#,C1=2-1-1=0.

° Co= (e1,e1,e2,e2,—e1,—€2,—€1,€2,€2)
#,Cr=2-1-1=0,
#,Co=2—-1+2=3.

det[#,,C;] = det [(3) g] =9. So 3 ham cycif p # 3.

Corollary

S=1{s1",...,5/'}. Ham cycs Cy, ..., Cr in Cay(G; S).
If p tdet[#;,Cj], then Cay(G;S) has a ham cyc.

Theorem (D.Morris & K. Wilk, 2018%)

Cay(G;S) has ham cycle if |G| = kp with k < 48.

Method of proof.

For each k < 48, group G of order k, gen set S of G:
find Cq,.. ., Cr in Cay(G; S), such that
det[#5,C;] # 0. (exhaustive search, not LKH)

Cor provides ham cyc in Cay(Z, x G;S) if p t det.

Otherwise (finitely many), apply LKH to Z, x G. OJ




How to handle semidirect products

Suppose G is not a direct product: G = Z, X+ G.
(z1, h1) * (22, h2) = (z1 + T(M1) 22, h1h?)
Lift T: G — Z}; to character T: G — up 1.
Count #,C; is weighted by values of 7.
det[#7,C,] is an algebraic integer.
Need p not to divide the norm of the determinant.

If p | Norm(det) (only finitely many),
apply LKH to Z, X+ G.
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