Cayley graphs of order kp are hamiltonian for k < 48

Dave Witte Morris University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Abstract. For every generating set *S* of any finite group *G*, there is a corresponding Cayley graph Cay(G; S). It was conjectured in the early 1970's that Cay(G; S) always has a hamiltonian cycle, but there has been very little progress on this problem. Joint work with Kirsten Wilk has established the conjecture in the special case where the order of *G* is kp, with k < 48 and p prime. This was not previously known for values of k in the set {24, 32, 36, 40, 42, 45}.

Example *Cayley graph* Cay($\mathbb{Z}_m \oplus \mathbb{Z}_n$; {±(1,0), ±(0,1)}) vertices: elements of $\mathbb{Z}_m \oplus \mathbb{Z}_n$ edges: $v - v \pm (1,0)$ and $v - v \pm (0,1)$ has hamiltonian cycle

Defn. Cay(G; S) for group G and $S \subseteq G$ with $S = S^{-1}$ vertices = elt's of G edge v - vs for $v \in G$, $s \in S$ (assume connected, i.e., $\langle S \rangle = G$)

Exercise

G abelian $\Rightarrow \forall S$, Cay(*G*;*S*) has a hamiltonian cycle.

Exercise G abelian $\Rightarrow \forall S$, $Cay(G;S)$ has a hamiltonian cycle. Open question (~1970) $EVery$ connected Cayley graph has a hamiltonian cycle? Recall. commutator $G' = \langle ghg^{-1}h^{-1} g, h \in G \rangle$. G abelian $\Leftrightarrow G' = \{e\} \Leftrightarrow G' = 1$. Theorem (Marušič, Durnberger, Keating-Witte, 1985) $Cay(G;S)$ has a ham cycle if $ G' = p$ (prime).Work in progress. \exists ham cyc if $ G' = pq$. ($p \neq q$) $\checkmark G$ nilpotent $\checkmark G $ odd $[E.Ghaderpour]$ $[D.Morris]$	Open question (~1970) <i>¿Every connected Cayley graph has a hamiltonian cycle?</i> Theorem (2011-2013) $Cay(G; S)$ has ham cycle if $ G = kp$ with p prime and $24 \neq k < 32$. [Marušič, Kutnar, Šparl, Morris ² , Curran, Ghaderpour, Jungreis-Friedman (~1990)] Theorem (D. Morris & K. Wilk, 2018+) $Cay(G; S)$ has ham cycle if $ G = kp$ with $k < 48$.
---	---

Theorem (D. Morris & K. Wilk, 2018^+) Cay(*G*; *S*) has ham cycle if |G| = kp with k < 48.

For fixed *p*:

- only finitely many values of kp ($1 \le k < 48$)
- only finitely many groups *G* of order *kp*: gap has a list (e.g., order less than 1024)
- only finitely many Cayley graphs of *G*:
 gap code in Brandon Fuller's thesis

 (irredundant *S* up to Aut(*G*))
 (feasible up to order a few hundred)

Find ham cyc in each one by computer (LKH). For ~ 100 vertices, typically less than a second. (LKH can be applied to graphs with tens of thousands of vertices) **Theorem (D. Morris & K. Wilk,** 2018^+) Cay(*G*; *S*) has ham cycle if |G| = kp with k < 48.

Computer (LKH) deals with any finite set of primes so we may assume p is large: p > k.

Example (direct product)

Take any group \overline{G} of order k. Then $G = \mathbb{Z}_p \times \overline{G}$ is a group of order kp: $(z_1, h_1) * (z_2, h_2) = (z_1 + z_2, h_1 h_2)$

Example (semidirect product)

Choose homomorphism $\tau : \overline{G} \to \mathbb{Z}_p^*$. Then $G = \mathbb{Z}_p \rtimes_{\tau} \overline{G}$ is a group of order kp: $(z_1, h_1) * (z_2, h_2) = (z_1 + \tau(h_1) z_2, h_1 h_2)$

Lemma (Factor Group Lemma)	Lemma (Factor Group Lemma)
<i>Given</i> Cay(<i>G</i> ; <i>S</i>),	<i>Given</i> Cay(<i>G</i> ; <i>S</i>),
<i>let</i> $\overline{C} = (\overline{s_1},, \overline{s_n})$ <i>be a ham cyc in</i> Cay($\overline{G}; \overline{S}$).	<i>let</i> $\overline{C} = (\overline{s_1},, \overline{s_n})$ <i>be a ham cyc in</i> Cay($\overline{G}; \overline{S}$).
<i>Then</i> $\overline{s_1 s_2 \cdots s_n} = \overline{e}$, so $\pi_S \overline{C} := s_1 s_2 \cdots s_n \in \mathbb{Z}_p$.	<i>Then</i> $\overline{s_1s_2\cdots s_n} = \overline{e}$, so $\pi_S\overline{C} := s_1s_2\cdots s_n \in \mathbb{Z}_p$.
<i>If</i> $\pi_S \overline{C} \neq 0$, <i>then</i> Cay(<i>G</i> ; <i>S</i>) <i>has a ham cyc</i> .	<i>If</i> $\pi_S\overline{C} \neq 0$, <i>then</i> Cay(<i>G</i> ; <i>S</i>) <i>has a ham cyc</i> .
Proof. Let $z = \pi_S \overline{C}$. $e \stackrel{s_1}{\to} g_1 \stackrel{s_2}{\to} g_2 \stackrel{s_3}{\to} \dots \stackrel{s_{n-1}}{\to} g_{n-1}$ hits cosets of \mathbb{Z}_p $\stackrel{s_n}{\to} z \stackrel{s_1}{\to} zg_1 \stackrel{s_2}{\to} zg_2 \stackrel{s_3}{\to} \dots \stackrel{s_{n-1}}{\to} zg_{n-1}$ $\stackrel{s_n}{\to} z^2 \stackrel{s_1}{\to} z^2g_1 \stackrel{s_2}{\to} z^2g_2 \stackrel{s_3}{\to} \dots \stackrel{s_{n-1}}{\to} z^2g_{n-1}$ \vdots $\stackrel{s_n}{\to} z^{p-1} \stackrel{s_1}{\to} z^{p-1}g_1 \stackrel{s_2}{\to} z^{p-1}g_2 \stackrel{s_3}{\to} \dots \stackrel{s_{n-1}}{\to} z^{p-1}g_{n-1}$ $\stackrel{s_n}{\to} z^p = e$ hits all elements of G	Let's assume $G = \mathbb{Z}_p \times \overline{G}$. Corollary $\overline{S} = \{\overline{s}_1, \dots, \overline{s}_r\}$. Ham cycs $\overline{C}_1, \dots, \overline{C}_r$ in Cay $(\overline{G}; \overline{S})$. If $p \nmid \det [\#_{\overline{s}_i} \overline{C}_j]$, then Cay $(G; S)$ has a ham cyc.

Corollary	Corollary
$\overline{S} = \{\overline{s}_1^{\pm 1}, \dots, \overline{s}_r^{\pm 1}\}. \text{ Ham cycs } \overline{C}_1, \dots, \overline{C}_r \text{ in } \operatorname{Cay}(\overline{G}; \overline{S}).$ If $p \nmid \operatorname{det}[\#_{\overline{s}_i} \overline{C}_j]$, then $\operatorname{Cay}(G; S)$ has a ham cyc.	$\overline{S} = \{\overline{s}_1^{\pm 1}, \dots, \overline{s}_r^{\pm 1}\}. \text{ Ham cycs } \overline{C}_1, \dots, \overline{C}_r \text{ in } \operatorname{Cay}(\overline{G}; \overline{S}).$ If $p \nmid \det[\#_{\overline{s}_i} \overline{C}_j]$, then $\operatorname{Cay}(G; S)$ has a ham cyc.
Example Cay($\overline{G}; \overline{S}$) = Cay($\mathbb{Z}_3 \times \mathbb{Z}_3; \{\pm e_1, \pm e_2\}$). • $\overline{C}_1 = (e_2, e_2, e_1, e_1, -e_2, -e_1, -e_2, e_1, e_1)$ $\#_{e_1}\overline{C}_1 = 2 - 1 + 2 = 3,$ $\#_{e_2}\overline{C}_1 = 2 - 1 - 1 = 0.$ • $\overline{C}_2 = (e_1, e_1, e_2, e_2, -e_1, -e_2, -e_1, e_2, e_2)$ $\#_{e_1}\overline{C}_2 = 2 - 1 - 1 = 0,$ $\#_{e_2}\overline{C}_2 = 2 - 1 + 2 = 3.$	Theorem (D. Morris & K. Wilk, 2018+)Cay(G; S) has ham cycle if $ G = kp$ with $k < 48$.Method of proof.For each $k < 48$, group \overline{G} of order k , gen set \overline{S} of \overline{G} : find $\overline{C}_1, \ldots, \overline{C}_r$ in Cay($\overline{G}; \overline{S}$), such that det $[\#_{\overline{s}_i} \overline{C}_j] \neq 0$. (exhaustive search, not LKH)
$\det[\#_{e_i}\overline{C}_j] = \det \begin{bmatrix} 3 & 0\\ 0 & 3 \end{bmatrix} = 9. \text{ So } \exists \text{ ham cyc if } p \neq 3.$	Cor provides ham cyc in Cay($\mathbb{Z}_p \times \overline{G}; S$) if $p \nmid \text{det}$. Otherwise (finitely many), apply LKH to $\mathbb{Z}_p \times \overline{G}$.

How to handle semidirect products

Suppose *G* is <u>not</u> a direct product: $G = \mathbb{Z}_p \rtimes_{\tau} \overline{G}$. $(z_1, h_1) * (z_2, h_2) = (z_1 + \tau(h_1) z_2, h_1 h_2)$ Lift $\tau : \overline{G} \to \mathbb{Z}_p^*$ to character $\widetilde{\tau} : \overline{G} \to \mu_{p-1}$. Count $\#_{\overline{S}_i}^{\overline{\tau}} \overline{C}_j$ is weighted by values of $\widetilde{\tau}$.

det $[\#_{\overline{s}_i}^{\underline{\tau}}\overline{C}_j]$ is an algebraic integer. Need p not to divide the **norm** of the determinant.

If $p \mid \text{Norm}(\det)$ (only finitely many), apply LKH to $\mathbb{Z}_p \rtimes_{\tau} \overline{G}$.

- D.W. Morris and K. Wilk: Cayley graphs of order kp are hamiltonian for k < 48, Art of Discrete and Applied Mathematics (to appear). https://arxiv.org/abs/1805.00149
- K. Helsgaun: LKH an effective implementation of the Lin-Kernighan heuristic (version 2.0.7), 2012. http: //www.akira.ruc.dk/~keld/research/LKH/
- The GAP Group: GAP Groups, Algorithms, and Programming. https://www.gap-system.org