Does every Cayley graph have a hamiltonian cycle?

Dave Witte Morris

University of Lethbridge, Alberta, Canada

http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Abstract. It was conjectured 40 years ago that every connected Cayley graph has a hamiltonian cycle, but there is very little evidence for such a broad claim. The talk will describe some of the progress that has been made, and present a few of the many open problems. Almost all of the talk will be understandable to anyone familiar with the fundamentals of graph theory and group theory.

 $G \text{ abelian} \Rightarrow \forall S, \operatorname{Cay}(G;S) \text{ has a hamiltonian cycle}$ (if connected, i.e., if $\langle S \rangle = G$).

Conjecture

 $\forall G, \forall S, \operatorname{Cay}(G; S)$ has a hamiltonian cycle.

(We always assume $\langle S \rangle = G$ and $S \neq \emptyset$.)

Conjecture is known to be true if:

- *G* is abelian [easy by induction on #*S*]
- $G \cong D_{2n}$ is dihedral, and $4 \mid |G|$ [Alspach-Chen-Dean 2010]
- ullet $[G,G]\cong \mathbb{Z}_{p^k}$ (p prime) $[rac{ ext{Marušič}}{ ext{Durnberger}}, ext{Keating-Witte 1985}]$
- |G| is "small", e.g., p, 2p, 3p, ..., 31p (not 24p) [Kutnar-Marušič-Morris²-Šparl (Curran, Morris², Ghaderpour) 2011]
- $|G| = p^n$, i.e., G is a p-group [Witte 1986]

Open problem

Show Cay(G; S) has a hamiltonian cycle if $[G, G] \cong \mathbb{Z}_{na}$ (with p, q distinct primes).

Conjecture is known to be true if

• $|G| = p^n$, i.e., G is a p-group.

Open problem

Show Cay(G; S) has a hamiltonian cycle if $G = G_1 \times G_2$, with $|G_i| = p_i^{n_i}$. (G is "nilpotent")

Cayley graphs are *vertex-transitive*.

Open problem

Assume *X* is a vertex-transitive graph with p^n vertices. Show *X* has a hamiltonian cycle.

Two inductive constructions of ham cycles (via group theory):

- Factor Group Lemma (e.g., $[G, G] = \mathbb{Z}_{p^k}$),
- Skewed-generators argument (e.g., $|G| = p^n$).

Notation

Ham cyc in Cay(\mathbb{Z}_{12} ; 3, 4):

$$(3,3,3,4,4,-3,-4,-3,4,-3,-4,-4)$$

Ham cycle in Cay(G;S): List ($s_1, ..., s_n$) of el'ts of $S \cup S^{-1}$, s.t.

- { s_1 , s_1s_2 , $s_1s_2s_3$, ..., $s_1s_2\cdots s_n$ } = G (without repeats)
- \bullet $s_1s_2\cdots s_n=e$

Example

Suppose $S = \{a, b\}, [G, G] = \mathbb{Z}_p = N$, and $G/N = \overline{G} \cong \mathbb{Z}_4 \times \mathbb{Z}_3 = \langle \overline{a} \rangle \times \langle \overline{b} \rangle.$

Ham cycle $(\overline{s_1}, \ldots, \overline{s_{12}})$ in Cay $(\overline{G}; \overline{a}, \overline{b})$:

So $s_1, s_1 s_2, \ldots, s_1 s_2 \cdots s_{12}$ are coset reps of N in G.

Let $x = s_1 s_2 \cdots s_{12} = a^3 b^2 a^{-1} b^{-1} a^{-1} b a^{-1} b^{-2}$ or $a^2b^{-1}ab^2a^{-2}ba^{-1}b^{-2}$.

If $x \neq e$, then $\langle x \rangle = N$, so

 $(s_1,\ldots,s_{12})^p$ is a ham cyc in G: $s_1s_2 \cdots$ $s_1s_2\cdots s_{12}$ S_1 . . . $xs_1s_2\cdots s_{12}$ xs_1 xs_1s_2

 $x^{p-1}s_1$ $x^{p-1}s_2$ ··· $x^{p-1}s_1s_2$ ··· s_{12}

Example

Cayley digraph $Cay(\mathbb{Z}_{12}; 3, 4)$

vertices: elements of \mathbb{Z}_{12} edges: $v \rightarrow v + 3 \& v \rightarrow v + 4$

Exercise

G abelian $\Rightarrow \forall S$, Cay(G;S) has a hamiltonian cycle (if connected, i.e., if $\langle S \rangle = G$).

Example

 $\overrightarrow{\text{Cay}}(\mathbb{Z}_{12}; 3, 4)$ does *not* have a hamiltonian cycle.

Example

 $\overrightarrow{\text{Cay}}(\mathbb{Z}_{12}; 3, 4)$ does *not* have a hamiltonian cycle.

Proof.

Suppose H is a hamiltonian cycle.

Say vertex x travels by 4.

So x + 1 must travel by 4.

By induction, every vertex travels by 4. $\rightarrow \leftarrow$

So no vertex travels by 4. All travel by 3. $\rightarrow \leftarrow$

Open problem: When does $\overline{\text{Cay}}(\mathbb{Z}_n; S)$ have a ham cycle?

(X+1)

Conjecture

 $\overrightarrow{\text{Cay}}(\mathbb{Z}_n; S)$ has a ham cycle if $\#S \geq 5$.

Theorem

If $|G| = p^n$, then $\overrightarrow{Cay}(G; S)$ has a ham cycle.

Proof uses the Skewed-generators Argument for Cayley *di*graphs.

Corollary

If $|G| = p^n$, then Cay(G; S) has a ham cycle.

Open problem

Find a direct proof. (Factor Group Lemma?)

Proposition

If $|G| = p^n$ and G is abelian, then $\overrightarrow{Cay}(G; S)$ has a ham cycle.

Note: We may assume *S* is *minimal* generating set.

Recall: B a basis for vector space V, $\#B_1 < \#B \Rightarrow \langle B_1 \rangle \neq V$.

Similar fact for generating sets of p-groups

 $|G| = p^n$, S min'l gen set, $\#T < \#S \implies \langle T \rangle \neq G$.

Choose $a \in S$. Let $T = a^{-1}S \setminus \{e\}$, $H = \langle T \rangle$, d = |G:H|, and $S' = a^d(a^{-1}S) = a^{d-1}S$.

 $\langle S' \rangle = H = \langle T \rangle < G \implies$ induction

 $\overrightarrow{\text{Cay}}(H; S')$ has ham cycle $(a^{d-1}s_1, a^{d-1}s_2, \dots, a^{d-1}s_m)$.

Then $(a, a, a, \ldots, a, \underline{s_1}, a, a, a, a, \ldots, a, s_2, \ldots, a, a, a, \ldots, a, s_m)$ is a ham cycle in $\overline{\text{Cay}}(G; S)$.

Conjectures about Cay(G;S):

- ∃ hamiltonian cycle.
- ∃ hamiltonian path.
- \exists path of length $\epsilon \# G$.
- Cay(G; S) has a hamiltonian cycle for *some* (minimal) S.
- [Babai] \nexists cycle of length $(1 \epsilon) \#G$.

Proposition

- [Babai] \exists path (& cycle) of length $\approx \sqrt{\#G}$.
- [Witte] $\forall S$, $\exists S'$, Cay(G; S') has ham cyc, and $\#S' \leq 2(\#S)^2$.
- [Pak] $\forall G$, $\exists S$, Cay(G;S) has ham cyc, and $\#S \leq \log_2 \#G$.
- [Rankin + CFSG] G simple $\Rightarrow \exists \overrightarrow{Cay}(G; a, b)$ with ham cycle. $(\overrightarrow{Cay}(G; a, b) \text{ has ham cycle if } (a^{-1}b)^2 = e.)$

Some references

- D. Witte and J.A. Gallian, A survey: hamiltonian cycles in Cayley digraphs, $\it Discrete\ Math.\ 51\ (1984)\ 293-304.$
- S.J. Curran and J.A. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs a survey, *Discrete Math.* 156 (1996) 1-18.
- I. Pak and R. Radoičić, Hamiltonian paths in Cayley graphs, *Discrete Math.* 309 (2009), no. 17, 5501–5508.
- B, Alspach, C. C. Chen, and M. Dean: Hamilton paths in Cayley graphs on generalized dihedral groups. *Ars Math. Contemp.* 3 (2010), no. 1, 29D47.
- K. Kutnar, D. Marušič, J. Morris, D. W. Morris, and P. Šparl: Hamiltonian cycles in Cayley graphs of small order, (preprint). http://arxiv.org/abs/1009.5795
- S.C. Locke and D. Witte: On non-hamiltonian circulant digraphs of outdegree three. $J.\ Graph\ Theory\ 30\ (1999)\ 319-331.$
- Š. Miklavič and P. Šparl: On Hamiltonicity of circulant digraphs of outdegree three, *Discrete Math.* 309 (2009), no. 17, 5437–5443.