

c)2005 Dave Morris Hamiltonian cycles in Cayley graphs	
Rem. Cay $(D_8 ; f, t)$ has a hamiltonian cycle. f - tf f - tf $t^3 f - t^2 f$ t^2 $t^3 f - t^2 f$ t^2 $t^3 f - t^2 f$ $t^3 f - t^2 f$ $t^3 f - t^2 f$ $t^3 f - t^2 f$ $t^3 f - t^2 f$ t^2 Exer. If $gcd(a, b, n) = 1$, then $\langle f, ft^a, ft^b \rangle = D_{2n}$, so $Cay(D_{2n}; f, ft^a, ft^b)$ has valence 3. (Embeds on torus, with every face a hexagon.)	Cay $(D_{2n}; f, ft^a, ft^b)$: Thm (Alspach-Zhang). Cay $(D_{2n}; f, ft^a, ft^b)$ has a hamiltonian cycle. Conj. Cay $(D_{2n}; \{reflections\})$ has a ham cyc. (Then every Cay $(D_{2n}; S)$ has a ham cyc.)
Conj. $Cay(G; S)$ has a hamiltonian cycle.	Thm (Durnberger, Marušič, Keating-Witte). Cor(C, S) has a horn such if $[C, C]$ has prime order
True when G is "almost" abelian.	Cay(G; S) has a ham cycle if $[G, G]$ has prime order.
Defn. commutator subgroup of $G = [G, G]$ = $\langle g^{-1}h^{-1}gh g, h \in G \rangle$.	Idea of proof. $\overline{G} = G/[G,G]$ is abelian $\Rightarrow \operatorname{Cay}(\overline{G}; \overline{S})$ has a ham cyc \overline{C} .
Rem. G is abelian $\Leftrightarrow [G,G] = \{e\}.$	Lift \overline{C} to a <i>path</i> P in $Cay(G; S)$.
Thm (Durnberger, Marušič, Keating-Witte). Cay $(G; S)$ has a ham cycle if $[G, G]$ has prime order or, more generally, is cyclic of prime-power order.	Assume P is not a cycle.["Marušič's method"]Then we construct ham cycin $Cay(G; S)$
Problem. Find hamiltonian cycle if $[G,G] \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.	by concatenating translates of P .
Thm (Witte). Cay(G; S) has a hamiltonian cycle if #G is a prime power p^n . Problem. Find hamiltonian cycle if $\#G = 2p^n$. Problem. Find hamiltonian cycle if $G = P \times Q$ where $\#P$ and $\#Q$ are prime powers. (G is "nilpotent.")	 Summary. Cay(G; S) has a hamiltonian cycle if G is abelian, or [G, G] is cyclic of prime-power order, or G is of prime-power order. Important. True for all generating sets S of G. (Not just particular generating sets of G.) Most groups are not covered. But conjecture is true for small groups.
Thm (? Friedman-Jungreis, Kutnar-Marušič-Morris ² -Šparl). Cay(G; S) has a hamiltonian cycle if $\#G =$ • $k p$, with $k \le 23$ ($\ne 16$), • $k p^2$, with $k \le 4$, • $k p^3$, with $k \le 2$, • $k pq$, with $k \le 4$, • pqr , • p^n . For $\#G \le 100$, missing • $48 = 2^4 \cdot 3 = 16p$, • $72 = 2^3 \cdot 3^2 = 8p^2$, • $80 = 2^4 \cdot 5 = 16p$, • $96 = 2^5 \cdot 3 = 32p$. Should do 16p and $8p^2$. (Help???) 32p will be too much work.	

© 2005 Dave Morris Hamiltonian cy There are many results on <i>specific</i> generating sets.	$\overbrace{Proof.}^{\text{cles in Cayley graphs}} \overrightarrow{\text{Proof.}} (\underset{\forall g, g = -g}{\text{Rankin}}) \underbrace{\overrightarrow{\text{Cay}}(G_2 s, t)}_{gs} \underbrace{has}_{gs} \underbrace{a ham}_{gs} \underbrace{cycle}_{gs} \underbrace{f(st^{-1})^2 = e}_{gs}.$
Thm (Ruskey-Savage). $\operatorname{Cay}(S_n; S)$ has a ham cyc if S consists of transpositions (i, j) . Thm (Alspach). $\operatorname{Cay}(G; s, t)$ has a ham cyc if $\langle s \rangle$ is a normal subgroup of G. Thm (Rankin). $\overrightarrow{\operatorname{Cay}}(G; s, t)$ has a ham cyc if st^{-1} has order 2 (i.e., $(st^{-1})^2 = e$). Cor. G simple $\Rightarrow \exists s, t \in G$, $\overrightarrow{\operatorname{Cay}}(G; s, t)$ has ham cyc. Cor (Pak). $\forall G, \exists S, \overrightarrow{\operatorname{Cay}}(G; S)$ has a ham cyc, and $\#S \leq \log_2 \#G$.	Vertices of $\operatorname{Cay}(G; S)$ covered by disjoint cycles. $\operatorname{Cay}(G; S)$ connected $\Rightarrow \exists$ edge g_gt that joins two cycles. $\cdots g_{ga} gs $
Conj. $Cay(G; S)$ has a hamiltonian cycle. Problem. Find ham cyc in prism $Cay(G; S) \square P_2$. Done when valence is three: Thm (Rosenfeld). The prism over X has a hamiltonian cycle if X is cubic and 3-connected.	 Survey articles. B. Alspach, The search for long paths and cycles in vertex-transitive graphs and digraphs. Combinatorial mathematics, VIII (Geelong, 1980), pp. 14–22, Lecture Notes in Math., 884, Springer, Berlin-New York, 1981. MR 83b:05080 D. Witte and J.A. Gallian, A survey: Hamiltonian cycles in Cayley graphs, Discrete Math. 51 (1984), no. 3, 293–304. MR 86a:05084 S.J. Curran and J.A. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs–a survey, Discrete Math. 156 (1996), no. 1–3, 1–18. MR 97f:05083