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Abstract

It was conjectured, more than 30 years ago, that every vertex-
transitive graph has a hamiltonian path, and that every Cayley graph
has a hamiltonian cycle (unless the graph is disconnected). This talk
will survey the progress that has been made on these problems, both
of which remain very much open. For example, it is still not known
whether every Cayley graph on every dihedral group has a hamilto-
nian cycle. (The cubic case was settled by Brian Alspach and C.–Q.
Zhang.) Related questions on directed graphs will also be discussed;
for example, it is easy to see that every (connected) circulant digraph
has a hamiltonian path, but we do not know which circulant digraphs
have hamiltonian cycles.

Eg. Cartesian product Cm Cn.
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Exer (Easy). Cm Cn has a Hamilton cycle.
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Eg. Hamilton cycle in Cm Cn when n is even.
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Vertices of Cm Cn

= ordered pairs
= elements of Zm ⊕ Zn.

Edges
(x, y) (x±1, y)
(x, y) (x, y±1).

I.e., v v±e1 and v v±e2,
where e1 = (1, 0) and e2 = (0, 1)
are the natural generators of Zm ⊕ Zn.

I.e., v v ± e1 and v v ± e2,
where e1 = (1, 0) and e2 = (0, 1)
are the natural generators of Zm ⊕ Zn.

Defn. G = finite abelian group (e.g., Zm ⊕ Zn)
S = generating set of G (e.g., {e1, e2})

Cayley graph Cay(G;S):
vertices = elements of G

edge v v ± s for v ∈ G and s ∈ S

Eg. Cay
(
Zm ⊕ Zn;{e1, e2}

) ∼= Cm Cn.

Exer. Cay(G;S) has a Hamilton cycle (for any G and S).

In fact, Cay(G;S) has many Hamilton cycles.

Thm (Chen-Quimpo). Cay(G;S) is Hamilton connected
(i.e., ∀v, w, ∃ Ham path from v to w)

unless valence ≤ 2 (or graph is bipartite).

Conj (Alspach). Cay(G;S) is Hamilton decomposable
(i.e., edge-disjoint union of Ham cycles [+ 1-factor?]).

Thm (Bermond-Favaron-Mahéo). True if valence ≤ 5.

In fact, Cay(G;S) has many Hamilton cycles.

Recall. Any flow in any graph is a sum of cycles.
• A flow is a function φ:E±(X) → Z, s.t. . . .

• Flows can be added. (φ + ψ)(e) = φ(e) + ψ(e)
• Any directed cycle defines a flow φ:E±(X) → {0,±1}.

Thm (Alspach-Locke-Witte, Locke-Witte).
Every flow in Cay(G;S) is a sum of cyclesHamilton
if #G is odd (and Cay(G;S) �∼= C3 C3).

#G even ⇒ Ham cycs are even flows:
∑

e∈E+(X)

f(e) ∈ 2Z.
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#G even ⇒ Ham cycs are even flows:

∑

e∈E+(X)

f(e) ∈ 2Z.

Converse:

Thm (Morris, Morris, Moulton).
Every even flow in Cay(G;S) is a sum of Hamilton cycles
if valence ≥ 5.

We have almost finished classifying the counterexamples,
but there is still an open case of valence 4.

Conj (Moulton).
Not every even flow is a sum of Ham cycs in Codd C4k+2.

Conj. Cay(G;S) has a Hamilton cycle.

Problem. Show Cay(G;S) has a Ham cyc if G is small
(say, #G < 100).

Frank Ruskey: cubic of order < 100 may be done?
(Gordon Royle’s web page has a list.)

Problem. Find Ham cyc in prism Cay(G;S) P2.

Done for cubic case:

Thm (Rosenfeld).
The prism over X has a Hamilton cycle if
X is cubic and 3-connected.

Conj. Cay(G;S) has a Hamilton cycle.

Positive result when G is abelian.“almost”

Defn. commutator subgroup of G = [G, G]
= 〈 g−1h−1gh| g, h ∈ G 〉.

Rem. G is abelian ⇔ [G, G] = {e}.

Thm (Durnberger, Marušič, Keating-Witte).
Cay(G;S) has a Hamilton cycle if [G, G] has prime order
or, more generally, is cyclic of prime-power order.

Problem. Find Hamilton cycle if [G, G] ∼= Z2 ⊕ Z2.

Thm (Durnberger, Marušič, Keating-Witte).
Cay(G;S) has a Hamilton cycle if [G, G] has prime order.

Idea of proof. G = G/[G, G] is abelian
⇒ Cay(G;S) has a Ham cyc C.

Lift C to a path P in Cay(G;S).

Assume P is not a cycle.
[“Marušič’s method”]

Then we construct Ham cyc
in Cay(G;S)

by concatenating translates of P .

Thm (Witte). Cay(G;S) has a Hamilton cycle
if #G is a prime power pn.

Problem. Find Hamilton cycle if #G = 2pn.

Problem. Find Hamilton cycle if G = P ×Q

where #P and #Q are prime powers.
(G is “nilpotent.”)

Problem. Generalize to vertex-transitive graphs.

Thm (Yu Qing Chen).
Vertex-transitive graphs of order p4 have Ham cycs.

Summary. Cay(G;S) has a Hamilton cycle if
• [G, G] is cyclic of prime-power order, or
• G is of prime-power order.

Most groups do not fall into these categories.

Eg. Dihedral group D2n of order 2n
= 〈 t, f | tn = e, f2 = e, ftf = t−1 〉
= symmetries of a regular n-gon

• n rotations (t0, t1, t2, . . . , tn−1)
• n reflections (f, ft1, ft2, . . . , ftn−1)

Rem. Cay
(
D2n; {t, f}

) ∼= prism (over cycle 〈t〉)
has a Hamilton cycle.

Eg. Dihedral group D2n of order 2n
= 〈 t, f | tn = e, f2 = e, ftf = t−1 〉.

Rem. Cay
(
D2n; {t, f}

)
has a Hamilton cycle.

Exer. If gcd(a, b, n) = 1, then 〈f, fta, ftb〉 = D2n,
so Cay

(
D2n; {f, fta, ftb}

)
is cubic.

(Embeds on torus, with every face a hexagon.)

Thm (Alspach-Zhang).
Cay

(
D2n, {f, fta, ftb}

)
has a Hamilton cycle.

Conj. Cay
(
D2n, {f, fta1 , fta2 , . . . , ftar}

)
has a Ham cyc.

(Then Cay(D2n, S) has a Ham cyc, for any S.)

Conj. Cay
(
D2n, {f, fta1 , fta2 , . . . , ftar}

)
has Ham cyc.

Possible approach (stronger induction hypothesis):

Problem (Alspach).
Show Cay(D2n, S) is Hamilton connected if #S = 3.

Another approach is via Cayley digraphs. (directed)

Defn. G = finite abelian group
S = generating set of G

Cayley digraph −−→Cay(G;S):
vertices = elements of G

edge v → vs for v ∈ G and s ∈ S.
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Exer. If G is abelian, then −−→Cay(G;S) has a Hamilton path.

Exer. −−→Cay
(
Z12; {3, 4}

)
does not have a Hamilton cycle.

Problem. Which circulant digraphs have a Ham cycle?

Answer (Rankin, 1948) when #S = 2 (and G is abelian).

Conj (Curran-Witte). If
• G is cyclic (or abelian), and
• #S ≥ 3, and
• S is minimal (no proper subset of S generates G),

then −−→Cay(G;S) has a Hamilton cycle.

Exer. Conj ⇒ Cay(D2n, S) has a Ham cycle, for every S.

Conj (Curran-Witte). G abelian, #S ≥ 3, S minimal
⇒ −−→Cay(G;S) has a Hamilton cycle.

Thm (Curran-Witte).
Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr has an obvious gen set Snat.

r ≥ 3 ⇒ −−→Cay(Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr ;Snat) has a Ham cyc.

Cor. If −→C 1, . . . ,
−→
C r are directed cycles, and r ≥ 3,

then −→
C 1 · · · −→

C r has a Hamilton cycle.

Thm (Locke-Witte).
−−→Cay

(
Z12k; {6k, 6k + 2, 6k + 3}

)
has no Hamilton cycle.

Ques. −−→Cay(G;S) has Ham cyc if #S ≥ 4 (& G cyclic)?

Conj (Curran-Witte). G abelian, #S ≥ 3, S minimal
⇒ −−→Cay(G;S) has a Hamilton cycle.

Conj. If −→C 1, . . . ,
−→
C r are directed cycles, and r ≥ 3, and

gcd(n1, . . . , nr) = 1, then −→
C 1 · · · −→

C r is Ham conn.
(I.e., ∀ vertices v, w, ∃ Ham path from v to w.)

Exer. In −−→Cay(Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr
;Snat),

if there is a Hamilton path from v to w, then
w1 + · · ·+ wr ≡ v1 + · · ·+ vr − 1 (mod gcd(n1, . . . , nr)).

Conj (Austin-Gavlas-Witte). Converse if r ≥ 3.

Thm (Austin-Gavlas-Witte). True when n1 = · · · = nr.

There are many results on specific generating sets.

Thm (Alspach). Cay
(
G; {x, y}

)
has a Hamilton cycle

if 〈x〉 is a normal subgroup of G.

Thm (Rankin). −−→Cay
(
G; {x, y}

)
has a Hamilton cycle

if xy−1 has order 2 (i.e., (xy−1)2 = e).

Cor. G simple ⇒ ∃ x, y ∈ G, −−→Cay
(
G; {x, y}

)
has H cyc.

Cor (Pak). ∀G, ∃S, −−→Cay
(
G;S

)
has a Hamilton cycle,

and #S ≤ log2 #G.

Conj. ∀G, ∃S, −−→Cay
(
G;S

)
has a Hamilton cycle,

and S is a minimal generating set (or minimum?).
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