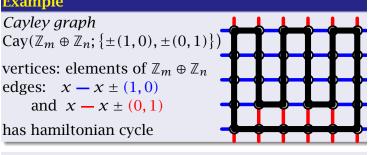
Hamiltonian cycles in some easy Cayley graphs

Dave Witte Morris University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris/talks.shtml Dave.Morris@uleth.ca

Abstract. It was conjectured 45 years ago that every connected Cayley graph has a hamiltonian cycle, but there is very little evidence for such a broad claim. The talk will explain what Cayley graphs are, describe some of the progress that has been made on this problem, and present a few of the many open questions. Almost all of the talk will be understandable to anyone familiar with the fundamentals of graph theory and group theory.

Example

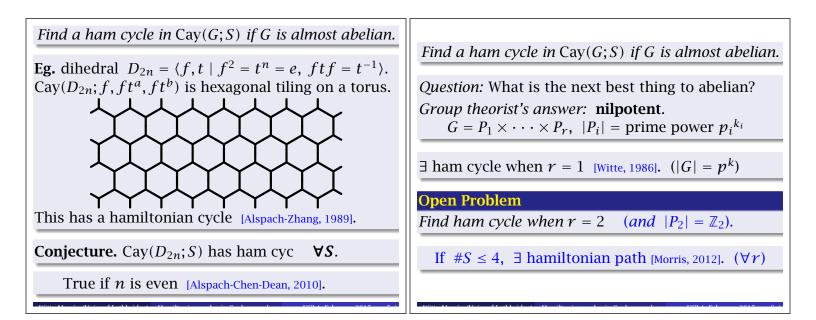


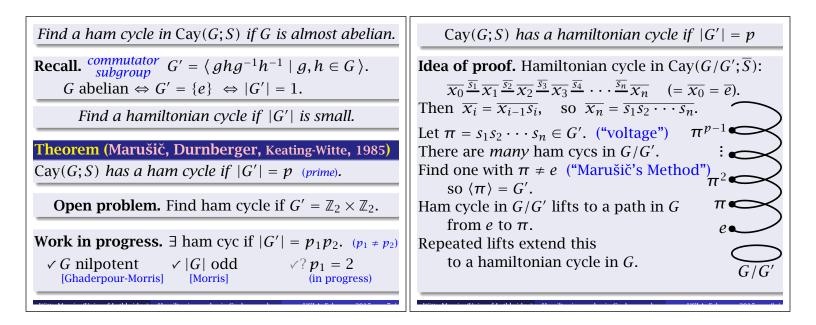
Defn. Cay(G; S) for group G and $S \subseteq G$ with $S = S^{-1}$ vertices = elt's of G edge x - xs for $x \in G, s \in S$ (assume **connected**, i.e., $\langle S \rangle = G$)

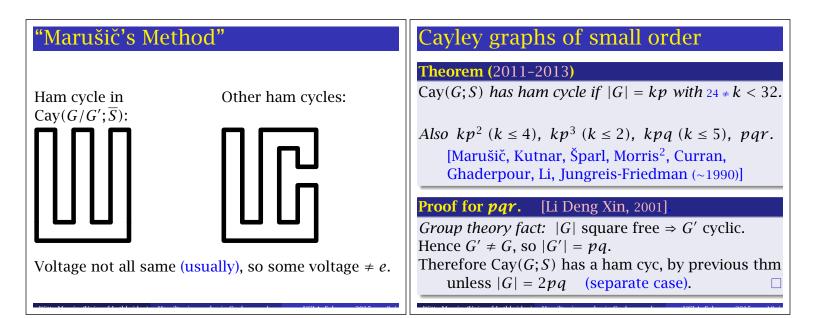
Exercise

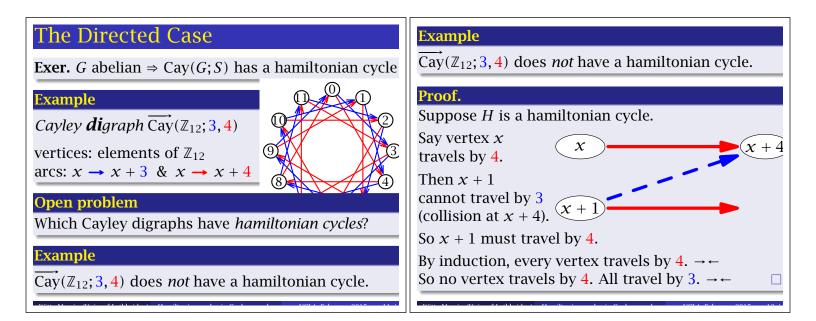
G abelian $\Rightarrow \forall S$, Cay(*G*; *S*) has a hamiltonian cycle.

Exercise <i>G</i> abelian $\Rightarrow \forall S$, Cay(<i>G</i> ; <i>S</i>) has a hamiltonian cycle.	Conjecture $\forall G, \forall S, Cay(G; S)$ has a hamiltonian cycle.
Open Problem Every connected Cayley graph has a hamiltonian cycle?	Many papers pick an interesting group (e.g., Sym_n) that has a natural generating set <i>S</i>
 Conjectures about Cay(G; S): [Parsons?, ~1970] ∃ hamiltonian cycle. ∃ hamiltonian path. ∃ path of length <i>ϵ</i>#G. 	(e.g., $\{(12n), (12)\}$ or $\{, (i i + 1),\}$) and find a hamiltonian cycle in Cay(<i>G</i> ; <i>S</i>). Applications to design of efficient algorithms. "Combinatorial Gray Codes"
 □ path of length e#G. [Witte, 1982] ∃ ham cycle for <i>some</i> minimal S. [Babai, 1995] ∄ cycle of length (1 − ε) #G. 	My viewpoint: Consider <i>all S</i> for given <i>G</i> . Exercise
Proposition (Babai, 1979) $\exists path (\& cycle) of length > \sqrt{\#G}.$	<i>G</i> abelian $\Rightarrow \forall S$, Cay(<i>G</i> ; <i>S</i>) has a hamiltonian cycle. <i>¿ Can we find a ham cycle if G is almost abelian ?</i>









Eg. $\overrightarrow{Cay}(\mathbb{Z}_{12}; 3, 4)$ does <i>not</i> have a hamiltonian cycle. Exercise (Rankin, 1948)	Exer. $\overrightarrow{Cay}(\mathbb{Z}_n; a, b)$ has a ham cyc $\Leftrightarrow \dots$
$\overrightarrow{Cay}(\mathbb{Z}_n; a, b) \text{ has a ham cyc } \Leftrightarrow \exists s, t \in \mathbb{Z}^{\geq 0}, \text{ s.t.}$ $s + t = \gcd(a - b, n) = \gcd(sa + tb, n).$	Conjecture $\overrightarrow{Cay}(\mathbb{Z}_n; a, b, c)$ has a ham $cyc \Leftrightarrow \dots$
Theorem (Locke-Witte, 1999) \nexists hamiltonian cycle in: • $\overrightarrow{Cay}(\mathbb{Z}_{12k}; 6k, 6k + 2, 6k + 3)$	Conjecture $\#S > 3 \Rightarrow \overrightarrow{Cay}(\mathbb{Z}_n; S)$ has a ham cyc.
• $\overrightarrow{Cay}(\mathbb{Z}_{2k}; a, a + 1, a + k)$ if $a + k$ is even (and $gcd(a, 2k) \neq 1$ and $gcd(a + 1, 2k) \neq 1$).	Exercise Conjecture true \Rightarrow Cay $(D_{2n}; S)$ has a hamiltonian cycle (if $\#S > 4$)
Conjecture These are the only 3-gen'd examples. (up to \cong)	$\Rightarrow \overline{\text{Cay}}(D_{2n}; S) \text{ has a hamiltonian cycle } (\text{if } \#S > 4)$

SurveysB. Alspach: The search for long paths and cycles in vertex-transitive graphs and digraphs. <i>Combinatorial mathematics, VIII (Geelong, 1980).</i> Springer, 1981, pp. 14–22. MR 0641232D. Witte and J. A. Gallian: A survey: Hamiltonian cycles in Cayley graphs, <i>Discrete Math.</i> 51 (1984) 293–304. MR 0762322	C. Savage: A survey of combinatorial Gray codes, <i>SIAM Rev.</i> 39 (1997) 605–629. MR 1491049 I. Pak and R. Radoičić: Hamiltonian paths in Cayley graphs, <i>Discrete Math.</i> 309 (2009) 5501–5508. MR 2548568
S. J. Curran and J. A. Gallian: Hamiltonian cycles and paths in Cayley graphs and digraphs — a survey, <i>Discrete Math.</i> 156 (1996) 1–18. MR 1405010	

Recent results	
K. Kutnar, D. Marušič, D & J. Morris, and P. Šparl: Hamiltonian cycles in Cayley graphs whose order has few prime factors, <i>Ars Math. Contemp.</i> 5 (2012) 27-71. MR 2853700, http://amc.imfm.si/index.php/amc/article/view/177	D.W.Morris: Odd-order Cayley graphs with commutator subgroup of order <i>pq</i> are hamiltonian, <i>Ars Math. Contemp.</i> 8 (2015), no. 1, 1–28. MR 3281117,
D. W. Morris: 2-generated Cayley digraphs on nilpotent groups have Hamiltonian paths, <i>Contrib. Discrete Math.</i> 7 (2012) 41-47. MR 2956335, http://hdl.handle.net/10515/sy5ks6jk4	http://amc.imfm.si/index.php/amc/article/view/330