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Abstract. Let Γ be an arithmetic subgroup of G = SL(n,R), with n > 2. (More generally, Γ could
be any irreducible arithmetic subgroup of any semisimple Lie group of higher real rank.) We will
describe a proof (due to Margulis) that the first cohomology of Γ vanishes (with coefficients in
any finite-dimensional real representation). The result is a consequence of the much stronger
statement, known as the Margulis Superrigidity Theorem, that, roughly speaking, every finite-
dimensional representation of Γ extends to a finite-dimensional representation of G.

Lecture 1. Introduction

Let Γ be an arithmetic subgroup of a semisimple Lie group G, and let V be a Γ -
module. (All modules in these lectures are finite-dimensional vector spaces over
R or C. We could easily consider vector spaces over any field of characteristic
zero, but we will not have anything to say about coefficient groups that are not
vector spaces.) We would like to understand H∗(Γ ;V).

Example. Suppose W is a submodule of V . If W is a direct summand (i.e., V ≊
W ⊕ (V/W)), then it is obvious that

H∗(Γ ;V) ≊ H∗(Γ ;W)⊕H∗(Γ ;V/W),

but, in general, there is no easy way to calculate H∗(Γ ;V) from the cohomology
with coefficients in W and V/W .

Therefore, in situations where every Γ -module is semisimple (a direct sum of
simple modules), it suffices to calculate the cohomology with coefficients in the
simple modules. In fact, this is often the case:

Main Theorem [4, Thm. 7.6.16, p. 248]. If Γ is any arithmetic subgroup of SL(n,R),
with n ≥ 3, then every Γ -module is semisimple.

Remark [7]. The result is true much more generally. More precisely, essentially
the only exceptions are arithmetic subgroups of SO(1, n) and SU(1, n): if there
is a Γ -module that is not semisimple, then some finite-index subgroup of Γ is
isomorphic to Γ1 × Γ2, where Γ1 is an arithmetic subgroup of either SO(1, n) or
SU(1, n), for some n.

Unfortunately, SL(2,R) and SL(2,C) are isogenous to SO(1,2) and SO(1,3),
respectively. (Recall that two Lie groups are said to be “isogenous” if they are
isomorphic, modulo ignoring some finite groups.) Therefore, even the generalized
theorem does not apply to arithmetic subgroups of these two important groups.
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Exercise. Show that some arithmetic subgroup of SL(2,R) has a module that is
not semisimple.
[Hint: Let Γ be a free group or a surface group. In either case, the abelianization is infinite, so
there is a nontrivial homomorphism ρ : Γ → GL(2,C) whose image is in the abelian group

[
1 ∗
0 1

]
.

Then ρ(Γ) acts nontrivially on C2, but trivially on both (0,∗) and C2/(0,∗).]

The main theorem can also be stated as a cohomology calculation:

Corollary [4, Cor. 7.6.17, p. 249]. If Γ is any arithmetic subgroup of SL(n,R), with
n ≥ 3, then H1(Γ ;V) = 0 for every Γ -module V .

Proof [4, Lem. 5.22, p. 249]. Suppose

• ρ : Γ → GL(k,R) is a homomorphism, and
• α : Γ → Rk is a 1-cocycle representing some cohomology class in H1(Γ ;ρ).

Define ρ̂ : Γ → GL(k+ 1,R) by

ρ̂(g) =
[
ρ(g) α(g)

0 · · ·0 1

]
.

Since α is a 1-cocyle, which means α(gh) = α(g)+ ρ(g)α(h), it is easy to verify
that ρ̂ is a homomorphism.

The main theorem tells us that every Γ -module is semisimple, so there
is a (1-dimensional) ρ̂(Γ)-invariant complement W to the invariant subspace
(∗, . . . ,∗,0). Chose w ∈ Rk, such that (w,1) ∈ W . Then, letting

T =
[

I w
0 · · ·0 1

]
,

we have T(0, . . . ,0,∗) = W , so(
T−1ρ̂(g)T

)
(0, . . . ,0,1) ∈ (0, . . . ,0,∗),

which implies α(g) = w−ρ(g)w, for all g ∈ Γ . Therefore [α] = 0 in H1(Γ ;ρ). □

Remark [3, §1.4], [5, Chap. 13]. For modules with an invariant inner product, the
desired conclusion usually follows from Kazhdan’s property (T).

• Definition. Γ has Kazhdan’s property (T) if H1(Γ ;π) = 0, for every unitary
representation π : Γ → U(H), where H is any Hilbert space (possibly ∞-
dimensional).

• Theorem (Kazhdan et el.). Recall that Γ is an arithmetic subgroup of G. If
G = SL(n,R) with n ≥ 3, or, more generally, if no simple factor of G is
isogenous to SO(1, n) or SU(1, n), then Γ has Kazhdan’s property (T).

• Corollary. Suppose ρ : Γ → SU(k). If G = SL(n,R) with n ≥ 3, then
H1(Γ ;ρ) = 0.

The approach of Margulis exploits the fact that G-modules are semisimple:

Lemma. If G is any semisimple Lie group, then every G-module is semisimple.
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Proof (Weyl’s unitary trick). Assume, for simplicity, that G = SL(n,R), and that
V is a vector space over C. Then V is an SL(n,C)-module. By restriction, it is also
an SU(n)-module. Since a subspace of V is SL(n,R)-invariant if and only if it is
SU(n)-invariant, it suffices to show that V is semisimple as an SU(n)-module.

Since SU(n) is compact, there is an SU(n)-invariant Hermitian form ⟨ | ⟩ on V .
Then, for any SU(n)-invariant subspaceW ofV , we have the SU(n)-invariant direct
sum decomposition V = W +W⊥. So V is semisimple as an SU(n)-module. □

Thus, it would suffice to show that every Γ -module is (the restriction of) a G-
module, and that is (essentially) what Margulis proved:

Theorem (Margulis Superrigidity Theorem [4, §7.6], [5, Chap. 16], [8, §5.1]).

• Recall that Γ is an arithmetic subgroup of G = SL(n,R).
• Assume n ≥ 3.
• For simplicity, also assume G/Γ is not compact.
• Let ρ : Γ → GL(k,R) be a homomorphism.

Then there is a finite-index subgroup Γ ′ of Γ , such that ρ|Γ ′ extends to a continuous
homomorphism ρ̂ : G → GL(k,R).

Remark. Here is a more general statement of the superrigidity theorem.

• Let Γ be an irreducible, arithmetic subgroup of a connected, semisimple Lie
group G with finite center.

• Let ρ : Γ → GL(k,R) be a homomorphism.
• LetH be the identity component of the Zariski closure of ρ(Γ). This means

thatH is the (unique) smallest connected, closed subgroup of GL(k,R) that
contains a finite-index subgroup of ρ(Γ).

• To avoid minor complications, assume that G is simply connected, and has
no compact factors.

If G is not isogenous to either SO(1,m) or SU(1,m), for any m, then:

(1) H is semisimple, and
(2) if we assume, for simplicity, that H has no compact factors, then there

is a finite-index subgroup Γ ′ of Γ , such that ρ|Γ ′ extends to a continuous
homomorphism ρ̂ : G → H.

Remarks.
(A) All we need is Conclusion (1) of the preceding remark: this implies that the

Γ -module Rk is semisimple.

(B) In textbooks (e.g., [8, Thm. 5.1.2, p. 86]), proofs of the Margulis
Superrigidity Theorem often make the additional assumption that the
Zariski closure of ρ(Γ) is a noncompact, simple group. This special case
suffices for many purposes (such as the proof of the important Margulis
Arithmeticity Theorem, which states that every lattice in G is an arithmetic
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subgroup), but it is not enough for the proof of our main theorem. Indeed,
Remark A points out that, for this purpose, the whole problem is to show
that the Zariski closure is semisimple.

(C) For the special case where Γ = SL(n,Z), Bass-Lazard-Serre [1] proved that Γ
has the Congruence Subgroup Property, and it was observed by Bass-Milnor-
Serre [2, §16] that this implies the conclusion of the Margulis Superrigidity
Theorem.



Lecture 2. Proof

Recall

• Γ is an arithmetic subgroup of G = SL(n,R), with n ≥ 3.
• Every Γ -module is assumed to be a finite-dimensional vector space over

either R or C.

We wish to prove any of the three equivalent versions of the following result:

Main Theorem (Margulis [4, Thm. 7.6.16 and Cor. 7.6.17, pp. 248 and 249]).

(1) Every Γ -module is semisimple (i.e., a direct sum of simple modules).

(2) H1(Γ ;V) = 0 for every Γ -module V .

(3) Assume
• ρ : Γ → GL(k,R) is a homomorphism, and
• H is the identity component of the Zariski closure of ρ(Γ) (so H is the

smallest connected subgroup Γ ′ of GL(k,R) that contains a finite-index
subgroup of ρ(Γ)).

Then H is semisimple.

This is a consequence of the following stronger result:

Theorem (Margulis Superrigidity Theorem [4, §7.6], [5, Chap. 16], [8, §5.1]).
ρ|Γ ′ extends to a continuous homomorphism ρ̂ : G → H ⊆ GL(k,R).

Remark. In order to extend ρ|Γ ′ to a homomorphism ρ̂ : G → H, the embedding of
H in GL(k,R) is irrelevant: we will re-embed H into some other GL(m,R) before
we construct the extension.

Topologist’s viewpoint. Γ acts on G ×Rk via γ · (x,v) = (xγ−1, ρ(γ)v
)
.

Let V = (G × Rk)/Γ , so V is a vector bundle over G/Γ whose fiber is Rk.
Furthermore, G acts on V : multiplying x by g on the left is a bundle
automorphism (since it commutes with multiplication by γ on the right).

The following are equivalent:

(1) ρ extends to ρ̂ : G → GL(k,R).
(2) V ≊ G/Γ ×Rk (G-equivariantly), where g · (x,v) = (gx, ρ̂(g)v).
(3) ∃ G-invariant subspace V ⊂ Sect(V ), such that V ≊

-→ V |[e].
Proof. (1⇒2) Define φ : V ≊

-→ G/Γ ×Rk by φ
(
(x,v)/Γ

) = (xΓ , ρ̂(x)v).
(2⇒3) {constant sections} is G-invariant: for v ∈ Rk, define ξv(xΓ) = (xΓ , v).

Then g ξv(g−1x) = ξρ̂(g)v(x).
(3⇒1) G acts on V ≊ V[e] ≊ Rk. This extends ρ. □
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A bit more work shows that it suffices to find a (nonzero) G-invariant subspace
of Sect(V ) that is finite-dimensional (and satisfies a genericity assumption if the
representation ρ is reducible) [4, Prop. 7.4.6, p. 222]. The desired space of sections
will be obtained by bootstrapping from the following result, whose proof will be
postponed to the end of the lecture.

Key Fact. Let a ∈ A = {diagonal matrices in G}. Then there is a (nonzero) a-
invariant section of V .

Remark. Actually, we will replaceV with a bundle that corresponds to a different
representation of H.

Lemma. Assume
• A0 is a noncompact, closed subgroup of A, and
• V is an A0-invariant, finite-dimensional subspace of Sect(V ).

Then ⟨CG(A0) · V⟩ is finite-dimensional.

Idea of proof. A0 has a dense orbit on G/Γ (as we shall see), so if c ∈ CG(A0), then
the effect of c on a section is determined by what it does to the section at a single
point. □

Proof of superrigidity. Choose L1, L2, . . . , Lr ≊ SL(2,R) in G,∗ ∗
∗ ∗

1

 ,
∗ ∗

1
∗ ∗

 ,
1

∗ ∗
∗ ∗


such that

• G = LrLr−1 · · ·L1,
• Ai = Li ∩A is noncompact, and
• A⊥i = CA(Li) is noncompact.

By the Key Fact, we may let V0 be the span of an A0-invariant section (for some
A0 ⊂ A), so V0 is 1-dimensional and A0-invariant. Then let

Vi = ⟨Li ·A · Li−1 ·A · · ·L1 ·A · V0⟩.
Since G = LrLr−1 · · ·L1, we know that Vr is G-invariant. Furthermore, repeated
application of the lemma implies that each Vi is finite-dimensional (since A ⊆
CG(Ai) and Li ⊆ CG(A⊥i ). □

Technical problem. In the Key Fact, we actually only find a measurable invariant
section. (Identify two sections that agree a.e.) The proof of superrigidity goes
through, but we need more than just a dense orbit: use “ergodicity .”

Lemma (Special case of the Moore Ergodicity Theorem [5, §4J]). Suppose

• Γ is an arithmetic subgroup of G = SL(2,R),
• a = diag(t,1/t) ∈ SL(2,R) with t > 1, and
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• f is an a-invariant, measurable function on G/Γ .

Then f is constant (a.e.).

Idea of proof. Let u =
[

1 0
s 1

]
, so anua−n =

[
1 0

a−2ns 1

]
→
[

1 0
0 1

]
as n→ +∞.

Then

f(ux) = f(anux) = f(anua−nanx) ≈ f(anx) = f(x),

so f is
[

1 0
∗ 1

]
-invariant (a.e.). Similarly, it is also

[
1 ∗
0 1

]
-invariant (a.e.). Since

these subgroups generate G, it follows that f is G-invariant (a.e.), and, hence,
constant (a.e.). □

Our construction of an a-invariant section is based on a generalization of the
following simple observation.

Example. Suppose T ∈ GL(k,C). After a change of basis, we can assume T is in
Jordan Canonical Form. It is not difficult to see that if we letW+,W0, andW− be the
subspaces spanned by the basis vectors in blocks corresponding to eigenvalues
of absolute value > 1, = 1, and < 1, respectively, then Rk = W+ ⊕W0 ⊕W−, and

lim
m→±∞

∥Tmv∥1/m is


> 1 for v ∈ W×

+ ,
= 1 for v ∈ W×

0 ,
< 1 for v ∈ W×

− .
(∗)

The following result (which is stated in a very weak form) shows that this
observation can be generalized by replacing the single vector space V with a family
of vector spaces:

Multiplicative Ergodic Theorem (Oseledec [6], [4, App. A, pp. 346–351]). Assume:
• V → X is a vector bundle (with compact base X), so each fiber Vx is a real

vector space,
• T is an automorphism ofV , so the restriction of T to any fiberVx is a linear

isomorphism onto some other fiber VTx,
• we have a norm ∥ ∥ on each fiber Vx (that varies continuously with x), and
• µ is a finite T -invariant measure on the base X.

Then, for a.e. x ∈ X, the fiber Vx is a direct sum ω+(x) ⊕ω0(x) ⊕ω−(x), such
that (∗) holds with W×

ϵ replaced by ωϵ(x)×.

Remark. WhenG/Γ is not compact, the proof utilizes a more general version of the
Multiplicative Ergodic Theorem that replaces compactness with the assumption
that the functions log ∥Tx∥ and log ∥T−1

x ∥ are in L1, where Tx is the linear map
from Vx to VTx
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Proof of the Key Fact. Let T = a ∈ A. Then, for each x, let πx ∈ End(Vx) be the
projection to ω0(x) with kernel ω+(x)⊕ω−(x), so π is a section of the bundle
EndV = (G×Matk×k(R)

)
/Γ , where Γ acts on Matk×k(R) by γ ·M = ρ(γ)Mρ(γ)−1.

It is clear that each ωϵ is CG(a)-invariant, in the sense that c−1 ·ωϵ(cx)) =
ωϵ(x). Therefore, the section π is also CG(a)-invariant. In particular, it is a-
invariant. □

A technical issue. We need to know thatH acts faithfully on the space of sections.
(E.g., πx should not be the identity matrix for all x.)

Suppose, for example, that ρ is of the form ρ(γ) =
[
γ α(γ)
0 γ

]
∈ GL(6,R),

so α is a 1-cocycle. We wish to show ρ(Γ) (or H) is conjugate to a subgroup of[
∗ 0
0 ∗

]
, so the main concern is to be sure that U =

[
I ∗
0 I

]
is not in the kernel

of the action on the space of sections.
Let a = diag(t,1,1/t) with t > 1. Let W = R3 ⊂ R6, so W is a submodule. Since

the homomorphism γ , γ obviously extends to a homomorphism defined on G,
the subbundle of V with fiber W is G-equivariantly a product. So it is clear that
ωW

0 = (0,∗,0) ⊊ R3. Similarly for the quotient bundle with fiber R6/W .
This implies that ω0(x) is not U -invariant, so πx is not centralized by U .
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