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Abstract. M. Gromov proved in 1981 that every group of
polynomial growth has a nilpotent subgroup of finite index.
This is a fundamental result in Geometric Group Theory, but
Gromov’s proof is too difficult to include in many standard
courses on the subject. A tremendous simplification of the
proof of the key lemma was achieved by B. Kleiner in 2010
(using methods of T. H. Colding and W. P. Minicozzi II). A
further improvement by Y. Shalom and T. Tao has made the
theorem truly accessible. We present the simplified proof.
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Geometric Group Theory

Γ = group (e.g., Z2)
S = symmetric finite generating set

(e.g., {(±1,0), (0,±1)})
∀x,y ∈ Γ :

y = x · ? = xs1s2 · · · sk, ∃si ∈ S, ∃k ∈ N
Metric: d(x,y) = least such k.

So Γ has both algebraic structure (group)
and geometric structure (metric space).

Basic question: How are they related?
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Gromov’s Thm

Definition
ball B(r) = {x ∈ Γ | d(x, e) ≤ r }
Γ has polynomial growth if #B(r) ≤ rd (∃d ∈ N)

(does not depend on choice of generating set)

Example
Γ = Z2: #B(r) ≍ r 2. So Z2 has polynomial growth.

Easy: abelian grps have polynomial growth.
Exer: Nilpotent grps have polynomial growth.
Exer: Spse H is finite-index subgroup of Γ .

Γ has poly growth ⇐⇒ H has poly growth.
Cor: Virtually nilpotent grps have poly growth.

Virtually ! finite index subgrp is .
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Cor. Virtually nilp groups have polynomial growth.

Example
Γ = free group F2.

S = {a±1, b±1}.
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#B(r) is exp’l ≫ rd.
So F2 does not have
polynomial growth.

Exer: Groups of polynomial growth are amenable.

Theorem (Gromov)
Groups of polynomial growth are virtually nilpotent.

Assume: Γ has polynomial growth.
Prove: Γ is nilpotent* solvable.* (polycyclic)

Exer. polycyclic with poly growth ⇒ nilpotent*.
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Key Lem. ∃ f.d. rep ρ : Γ → GL(V), s.t. #ρ(Γ) =∞.

Gromov’s proof assumes hard theorems.
Kleiner, Shalom-Tao: elementary proof.

Idea: Let V = {f : Γ → R}. (fg)(x) = f(gx)
This representation is not finite-dimensional.
Kleiner: ∃ finite-dim’l invariant subspace.

Let V0 = { Lipschitz, harmonic f : Γ → R }.
|f(x)− f(y)| ≤ C d(x,y), ∃C ∈ R
f(x) = 1

#S
∑
s∈S f (xs)

Theorem (Kleiner, Colding-Minicozzi)
dimV0 <∞ if Γ has polynomial growth.

Prop. ∃f ∈ V0 not constant. (do not need poly growth)

So f Γ is infinite. (nonconstant harmonic func has no max)
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Thm. Cor. dim
{

Lipschitz, harmonic f
}
<∞.

Defn. For X ⊆ Γ , ∥f∥2
2,X =

∑
x∈X f(x)2.

Note: f Lipschitz (& Γ has polynomial growth)
⇒ ∥f∥2

2,B(r) ≤ polynomial rD.

Polynomials have bounded doubling:
ϕ(r) ∼ rd ⇒ ϕ(2r) ≤ Cϕ(r), ∀r .

Technical issue that we will ignore:
ϕ(r) ≤ rd ⇒ bdd dbling for most r , not all r .

Theorem ∃ϵ, ∀k, ∀r ,
f harmonic ⇒ ∥f∥2,B(6kr) ≥ ϵk∥f∥2,B(kr)

if f has mean 0 on each ball in a certain set B
of balls of radius r with #B = C′(k)

This contradicts bounded doubling if dim ≫ C′.
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Thm. ∃ set B of C′ balls of radius r :
f harmonic with mean 0 on each B ∈ B

⇒ ∥f∥2,B(6kr) ≥ ϵk∥f∥2,B(kr).

Analysis on ΓΓΓ
Definitions. Let f : Γ → R.

∂sf (x) = f(xs)− f(x).
|∂sf | ≤ C : f is Lipschitz. |f(x)− f(y)| ≤ C d(x,y).

∆f(x) = #S · f(x)−
∑
s∈S f (xs).

∆f = 0: f is harmonic.

(Assume S is symmetric (closed under inverses): S−1 = S.)
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Thm. f harmonic with mean 0 on each B ∈ B
⇒ ∥f∥2,B(6kr) ≥ ϵk∥f∥2,B(kr).

Step 1 (Poincaré Inequality)

Calculus: |f(x)| ≤
∫ x
0 |f ′(t)|dt if f(0) = 0.

So ∥f∥∞,B(r) ≤ r ∥f ′∥∞,B(r)
∥f∥2

2,B(r) ≤ C1 r 2∑
s∈S ∥∂sf∥2

2,B(3r) if mean 0 on B(r)

Idea of proof.

d(x,x0) = n: x0
s1 x1

s2 x2
s3 · · · sn xn = x.

f(x) = f(x0)+
∑n
i=1 ∂sif (xi) 1

∑n
i=1 ∂sif (xi).

f(x)2 1
(∑n

i=1 ∂sif (xi)
)2 ≤ n

∑n
i=1
(
∂sif (xi)

)2.

Sum over x ∈ B(r). (Note that n ≤ 2r .)
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1. Poincaré ≤≤≤: ∥f∥2
2,B(r) ≤ C1 r 2∑

s∈S ∥∂sf∥2
2,B(3r)

Step 2 (Reverse Poincaré Inequality)
∑
s∈S ∥∂sf∥2

2,B(R) ≤ C2 ∥f∥2
2,B(3R)/R2 if f harmonic

Idea of proof.
B(R)

B(2R)
0
1 e

ψ |∂sψ| ≤ 1
R

Let f ′ = ∂sf :

∥∂sf∥2
2,B(R) =

∑
x∈B(R) (f ′)2 ≤

∑
x∈Γ (f ′)2ψ2

Integration by parts (or “partial summation”)
moves derivative from f to ψ and ψ′ is small.
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1. Poincaré ≤≤≤: ∥f∥2
2,B(r) ≤ C1 r 2∑

s∈S ∥∂sf∥2
2,B(3r)

2. Reverse P I:
∑
s∈S ∥∂sf∥2

2,B(R) ≤ C2 ∥f∥2
2,B(3R)/R2

Step 3 (finish): ∥f∥

2

2,B(6kr) ≥ ϵk

2

∥f∥

2

2,B(kr)
∃ϵ,∀k,∃C′,∀r ,∃BVitali Covering Lemma:

Cover B(kr) with #B(2kr)
#B(r/2) < C

′ balls of radius r

No pt in more than #B(4r)
#B(r/2) < C tripled balls.

∥f∥2
2,B(kr) ≤

∑
B∈B ∥f∥2

2,B (balls cover B(kr))
≤ C1 r 2∑

s∈S
∑
B∈B ∥∂sf∥2

2,3B (Poincaré)

≤ CC1 r 2∑
s∈S ∥∂sf∥2

2,B(2kr)

(
no pt in more
than C balls

)

≤ CC1r 2 · C2∥f∥2
2,B(3(2kr))/(2kr)2 (Reverse P I)
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Review of Kleiner’s proof

Assume Γ has polynomial growth.

Poincaré ≤≤≤. ∥f∥2
2,B(r) ≤ C′r 2∑

s∈S ∥∂sf∥2
2,B(3r)

Reverse P I.
∑

s∈S ∥∂sf∥
2
2,B(R) ≤

C′

R2 ∥f∥
2
2,B(3R)

Thm. ∥f∥2,B(6kr) ≥ ϵk∥f∥2,B(kr).

Cor. dim
{

Lipschitz, harmonic f
}
<∞.

Prop. ∃ Lipschitz, harmonic, nonconstant f .

Key Lem. ∃ f.d. rep ρ : Γ → GL(V), s.t. #ρ(Γ) =∞.

Gromov’s Theorem. Γ is virtually nilpotent.
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Step 1 (Poincaré Inequality)

∥f∥2
2,B(r) ≤ C1 r 2∑

s∈S ∥∂sf∥2
2,B(3r) if mean 0 on B(r)

∥f∥2
2,B(r) =

∑

x∈B(r)
|f(x)|2

=
∑

x∈B(r)

∣∣∣f(x)− 1
#B(r)

∑

y∈B(r)
f (y)

∣∣∣
2

= 1
#B(r)2

∑

x∈B(r)

∣∣∣
∑

y∈B(r)

(
f(x)− f(y)

)∣∣∣
2

≤ 1
#B(r)

∑

x∈B(r)

∑

y∈B(r)
|f(x)− f(y)|2

≤ 1
#B(r)

∑

g∈B(2r)

∑

y∈B(r)
|f(yg)− f(y)|2
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Step 1 (Poincaré Inequality)

∥f∥2
2,B(r) ≤ C1 r 2∑

s∈S ∥∂sf∥2
2,B(3r) if mean 0 on B(r)

∥f∥2
2,B(r) ≤

1
#B(r)

∑
g∈B(2r)

∑
y∈B(r) |f(yg)− f(y)|2.

e = g0
s1 g1

s2 g2
s3 · · · sn gn = g∑

y∈B(r)
|f(yg)− f(y)|2 = ≤

2r
n∑

i=1

∑

y∈B(r)
|∂sif (ygi)|2

≤ 2r · 2r
∑

s∈S
∥∂sif∥2

2, B(3r)

∥f∥2
2,B(r) ≤

1
#B(r)

· #B(2r) · (2r)2
∑

s∈S
∥∂sf∥2

2,B(3r)
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Step 2 (Reverse Poincaré Inequality)
∑

s∈S ∥∂sf∥
2
2,B(R) ≤

C2

R2 ∥f∥
2
2,B(3R) if f harmonic.

Proof. B(R)

B(2R)
0
1 e

ψ |∂sψ| ≤ 1
R

Product rule (ϕψ)′ =ϕ′ψ+ sϕψ′ (sϕ(x) =ϕ(xs))
⇒ (fψ2)′ = f ′ψ2 + sf (ψ′ψ+ sψψ′)

= f ′ψ2 + sf ψ′
(
ψ′ + 2ψ

)

= f ′ψ2 + C′
R2

sf + C′
R
sfψ

⟨ϕ | ψ⟩X =
∑
x∈Xϕ(x)ψ(x)

⟨f ′|(fψ2)′⟩Γ = ∥f ′ψ∥2
2,Γ+C′

R2⟨f ′|sf ⟩B(2R)+C
′

R ⟨f ′
sf |ψ⟩Γ
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Reverse P I:
∑
s∈S ∥∂sf∥2

2,B(R) ≤
C′
R2 ∥f∥2

2,B(3R)

⟨f ′|(fψ2)′⟩Γ = ∥f ′ψ∥2
2,Γ+C′

R2⟨f ′|sf ⟩B(2R)+C
′

R ⟨f ′
sf |ψ⟩Γ

Sum over s ∈ S: 0 = (≥ LHS)✓ + (≤ RHS)+ (smaller).
∑
s ⟨∂sf | ∂s(fψ2)⟩ =

∑
s ⟨∂s−1∂sf | fψ2⟩

= 2⟨∆f | fψ2⟩ = 2⟨0 | fψ2⟩ = 0. ✓
∣∣⟨f ′|sf ⟩B(2R)

∣∣ =
∣∣⟨sf − f | sf ⟩B(2R)

∣∣
≤ ⟨sf |sf ⟩B(2R) +

∣∣⟨f |sf ⟩B(2R)
∣∣

≤ ∥f∥2
2,B(2R+1) + ∥f∥2,B(2R) ∥sf∥2,B(2R)

1 2∥f∥2
2,B(2R+1). ✓

Schwarz Inequality:
∣∣⟨ϕ | ψ⟩

∣∣ ≤ ∥ϕ∥2 ∥ψ∥2
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Reverse P I:
∑
s∈S ∥∂sf∥2

2,B(R) ≤
C′
R2 ∥f∥2

2,B(3R)

⟨f ′|(fψ2)′⟩Γ = ∥f ′ψ∥2
2,Γ+C′

R2⟨f ′|sf ⟩B(2R)+C
′

R ⟨f ′
sf |ψ⟩Γ

Sum over s ∈ S: 0✓ = (≥ LHS)✓+ (≤ RHS)✓+ (smaller)

C′

R

〈
f ′ sf

∣∣∣ψ
〉
Γ
=
〈
f ′ψ

∣∣∣C
′

R
sf
〉
B(2R)

≤ ∥f ′ψ∥2,Γ ·
C′

R
∥sf∥2,B(2R) (Schwarz Inequality)

≤ 1
2∥f ′ψ∥2

2,Γ +
C′′

R2 ∥
sf∥2

2,B(2R)

≤ 1
2∥f ′ψ∥2

2,Γ +
C′′

R2 ∥f∥
2
2,B(2R+1). ✓
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Expository
D. W. Morris: Groups of polynomial growth

(after Gromov, Kleiner, and Shalom-Tao).
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polygrowth.pdf

T. Tao, A proof of Gromov’s theorem.
https://terrytao.wordpress.com/2010/02/18/
a-proof-of-gromovs-theorem/

B. Kleiner: A new proof of Gromov’s theorem
on groups of polynomial growth,
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Y. Shalom and T. Tao: A finitary version of
Gromov’s polynomial growth theorem,

Geom. Funct. Anal. 20 (2010) 1502–1547. MR 2739001,
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