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Brief Historical Summary

It was known quite classically that there are nonarithmetic
lattices in SO(1, 2) (or, in other words, in SL(2,R)). This
was extended to SO(1, n), for n ≤ 5, by Makarov and Vin-
berg in the 1960’s. Two decades later, nonarithmetic lat-
tices were constructed by Gromov and Piatetski-Shapiro
for every n.

Nonarithmetic lattices in SU(1, n) were constructed by
Mostow for n = 2, and by Deligne and Mostow for n = 3.

These results on SO(1, n) and SU(1, n) are presented briefly
in Appendix C (pp. 353–368) of Margulis’s book.

G = conn, simple, noncpct, real, linear Lie group

Γ = lattice in G

• Γ is a discrete subgroup of G, and
• G/Γ has finite volume

Locally symm space Γ\G/K has finite volume
(if Γ is torsion free).

Eg. SL(n, Z) is a lattice in SL(n, R).

Defn. Lie subalgebra g of sl(`, R) is defined over Q
if it is solution space of linear eqs with Q-coeffs.

• G is defined over Q if g is.

Thm (Borel, Harish-Chandra). G defined over Q
⇒ GZ = G ∩ SL(`, Z) is a lattice in G.

Defn. GZ is an arithmetic lattice in G.

Different embeddings of G in (various) SL(`, Z)
can yield different lattices GZ.

All of these are arithmetic.

Also:
• Γ0 arithmetic in G × cpct

⇒ proj of Γ0 to G is arithmetic.
• Γ1 finite index in Γ2:

Γ1 arithmetic ⇔ Γ2 arithmetic.

Defn. Γ1 is commensurable to Γ2:
Γ1 ∩ Γ2 is finite index in both Γ1 and Γ2.

Lem.
• Γ1,Γ2 arithmetic lattices in G,
• Γ1 ∩ Γ2 Zariski dense in G

⇒ Γ1 is commensurable to Γ2.

Thm (Margulis Arithmeticity Theorem).
G 6= SO(1, n), SU(1, n) ⇒ Γ is arithmetic.

Thm (Gromov, Piatetski-Shapiro).
∃ nonarithmetic lattices in SO(1, n) (for n ≥ 2).

Rem. ∃ nonarith latts in SU(1, n) for n ≤ 3.
Not known whether they exist when n ≥ 4.

Eg. If a2, . . . , an+1 ∈ Z+, then
• G = SO(x2

1 − a2x
2
2 − a3x

2
3 − · · · − an+1x

2
n+1)

◦

∼= SO(1, n)◦;
• Γ = GZ is an arithmetic lattice in G; and
• G/Γ is compact iff 6 ∃ nontriv Z-solns of

x2
1 = a2x

2
2 + · · · + an+1x

2
n+1.

Rem. Γ noncocpct, arith latt in SO(n, 1)
⇒ Γ is as described in the example

(up to commensurability and conjs)
if n 6= 7 (triality causes a problem).

The cocpct latts can also be constructed explicitly.
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To make nonarith latts, take geometric view:
consider the locally symmetric space Γ\Hn.

Defn. Riemannian manifold M is hyperbolic:
• M is locally isometric to Hn, and
• M is connected, complete and orientable.

Prop. M hyperbolic of finite volume
⇔ M ∼= Γ\Hn, ∃ tors-free latt Γ ⊂ PO(1, n).

Defn. PO(1, n) = O(1, n)/{±1} = Isom(Hn)
∼ SO(1, n).

We combine (“interbreed”) two hyperbolic mflds
to create a new hyperbolic mfld (“hybrid”).

The hybrid is often nonarithmetic.

Thm. Suppose
• M1, M2 = connected, orientable n-mflds,
• Cj = closed (n − 1)-submanifold of Mj,
• f :C1 → C2 any homeomorphism.

Cut Mj open along Cj: M ′
j = mfld with bdry.

Glue M ′
1 to M ′

2 along bdry (via f): get M ′
1∪f M ′

2.

  
   

   
     

 

Then M ′
1 ∪f M ′

2 is an n-manifold (without bdry).
• Compact ⇔ M1 and M2 are compact.
• Conn ⇔ either M1 \ C1 or M2 \ C2 is conn.

May not be Riemannian (in natural way), even if
f is an isometry.

Eg. Let M ′
1 = M ′

2 = D2 closed unit disk in R2.
Glue M ′

1 to M ′
2 along boundary to get 2-sphere.

M ′
1 and M ′

2 are flat, but S2 has no flat metric.

Require Cj to be totally geodesic hypersurface:
(closed) image of Hn−1 in Γ\Hn.

Prop.
• M1,M2 hyperbolic (of finite volume),
• C1, C2 totally geodesic hypersurfaces,
• f :C1 → C2 isometry

⇒ M ′
1 ∪f M ′

2 is hyperbolic (of finite volume).

Thm.
• M ′

1 ∪f M ′
2 arithmetic,

• C1, C2 finite volume (as (n − 1)-manifolds),
• M1 \ C1,M2 \ C2 connected

⇒ M1 is commensurable to M2.
I.e., finite cover of one ∼= finite cover of other.

Proof. We show M ′
1∪f M ′

2 commensurable to M1.
• Let M = M ′

1 ∪f M ′
2.

• Write M = Γ\Hn.
• Let φ:Hn → M be the covering map.
• Let B = φ−1(∂M ′

1) =
⋃

disjoint Hn−1’s.
• Let V = closure of some component of Hn\B

that contains a point of φ−1(M ′
1).

• Let Γ′ = { γ ∈ Γ | γV = V }
= { γ ∈ Γ | γV ∩ V nonempty interior },

so M ′
1 = φ(V ) ∼= Γ′\V .
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V

Note: V =
⋂

half-spaces
⇒ V is hyperbolically convex
⇒ V is simply connected
⇒ V = univ cover of M ′

1,
Γ′ = fundamental group of M ′

1.

Define Γ∗, φ∗, B∗, V∗,Γ′
∗ as above, but with

M∗ = M ′
1 ∪Id M ′

1 in place of M .
Uniqueness of univ cover of M ′

1

⇒ wolog V = V∗ and Γ′ = Γ′
∗

⇒ Γ′ ⊂ Γ ∩ Γ∗.

Let Γ′ = Zariski closure of Γ′. Assume Γ′ 6⊃ G.
(This will lead to a contradiction.)

Wolog Hn−1 = component of ∂V .
∂M ′

1 finite volume
⇒ Γ′ ∩SO(1, n− 1) = lattice in PO(1, n − 1)
⇒ Γ′ ∩SO(1, n−1) Zar dense in PO(1, n−1)
⇒ Γ′◦ = PO(1, n − 1)◦

⇒ Γ′ ∩ PO(1, n − 1) finite index in Γ′

⇒ ∀ component H of ∂V ,
{ γ ∈ Γ′ | γH = H } finite index in Γ′.

Choose two components H1 and H2.
Assume Γ′H1 = H1 and Γ′H2 = H2.

For simplicity, assume dist(H1, H2) > 0.
(E.g., if ∂M ′

1 is compact.)
Negative curvature

⇒ ∃!p ∈ H1, dist(p,H2) = dist(H1,H2).
Uniqueness of p

⇒ Γ′ fixes p

⇒ Γ′ is finite (bcs properly discontinuous)
⇒ ∂M ′

1 ⊃ Γ′\H1 has infinite volume. →←

Thm. M ′
1 ∪f M ′

2 arithmetic
⇒ M1 is commensurable to M2.

Cor. ∃ nonarithmetic lattice Γ in SO(1, n).

Proof.
• Bj(x) = x2

1 − x2
2 − x2

3 − · · · − x2
n − jx2

n+1

• Γ1 ≈ SO(B1; Z)
• Γ2 ≈ h−1 SO(B2, Z)h

• h = diag(1, 1, . . . , 1,
√

2) ∈ GL(n + 1, R)
• Mj = Γj\Hn

• Cj = image of Hn−1 in Mj

• Γ̂j = Γj ∩ SO(1, n − 1)
Cj

∼= Γ̂j\Hn−1 and Γ̂1 = Γ̂2,
⇒ C1 ∼= C2.
⇒ ∃ M ′

1 ∪f M ′
2.

Suffices to show M1 not commensurable to M2.
I.e., Γ1 not commensurable to conj of Γ2.

Easy if n is odd.
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Lem.
• n odd,
• ∃g ∈ O(1, n), s.t. gΓ1g

−1 commens to Γj

⇒ j is a perfect square.

Proof. Unique Γ1-invariant quadratic form is B1,
up to a scalar multiple.

Hence, existence of g implies B1 = Bj , up to
• scalar from Q× and
• change of basis from GL(n + 1, Q).

Discriminant of λBj is λn+1j (a square times j).
Change of basis multiplies by (det)2.

Rem. M1 is commensurable to M2 if n is even.
But Γ is not arithmetic:

n − 1 odd ⇒ Γ ∩ SO(1, n − 1) not arithmetic.

Rem. We constructed a noncocompact lattice, but
the same method also yields a cocompact lattice.

References

M. Gromov and I. Piatetski-Shapiro:
Nonarithmetic groups in Lobachevsky spaces,
Publ. Math. IHES 66 (1988) 93–103. MR 89j:22019

G. A. Margulis:
Discrete Subgroups of Semisimple Lie Groups.
Springer, New York, 1991.

D. Witte:
Introduction to Arithmetic Groups (in progress).
http://www.math.okstate.edu/∼dwitte


