G = conn, simple, noncpct, real, linear Lie group

• Γ is a discrete subgroup of G, and

• G/Γ has finite volume

 $\Gamma =$ lattice in G

Department of Mathematics Oklahoma State University Stillwater, OK 74078	 Locally symm space Γ\G/K has finite volume (if Γ is torsion free). Eg. SL(n, Z) is a lattice in SL(n, R). Defn. Lie subalgebra g of sl(ℓ, R) is defined over Q
Brief Historical Summary It was known quite classically that there are nonarithmetic lattices in SO(1, 2) (or, in other words, in SL(2, \mathbb{R})). This was extended to SO(1, n), for $n \leq 5$, by Makarov and Vin- berg in the 1960's. Two decades later, nonarithmetic lat- tices were constructed by Gromov and Piatetski-Shapiro for every n. Nonarithmetic lattices in SU(1, n) were constructed by Mostow for $n = 2$, and by Deligne and Mostow for $n = 3$. These results on SO(1, n) and SU(1, n) are presented briefly in Appendix C (pp. 353–368) of Margulis's book.	 if it is solution space of linear eqs with Q-coeffs. • G is defined over Q if g is. Thm (Borel, Harish-Chandra). G defined over Q ⇒ G_Z = G ∩ SL(l, Z) is a lattice in G. Defn. G_Z is an arithmetic lattice in G.
Different embeddings of G in (various) $SL(\ell, \mathbb{Z})$ can yield different lattices $G_{\mathbb{Z}}$. All of these are <i>arithmetic</i> . Also: • Γ_0 arithmetic in $G \times \operatorname{cpct}$ \Rightarrow proj of Γ_0 to G is <i>arithmetic</i> . • Γ_1 finite index in Γ_2 : Γ_1 arithmetic $\Leftrightarrow \Gamma_2$ arithmetic. <i>Defn</i> . Γ_1 is <i>commensurable</i> to Γ_2 : $\Gamma_1 \cap \Gamma_2$ is finite index in both Γ_1 and Γ_2 . Lem . • Γ_1, Γ_2 arithmetic <i>lattices in</i> G , • $\Gamma_1 \cap \Gamma_2$ Zariski dense in G $\Rightarrow \Gamma_1$ is commensurable to Γ_2 .	Thm (Margulis Arithmeticity Theorem). $G \neq \mathrm{SO}(1, n), \mathrm{SU}(1, n) \Rightarrow \Gamma$ is arithmetic. Thm (Gromov, Piatetski-Shapiro). \exists nonarithmetic lattices in $\mathrm{SO}(1, n)$ (for $n \geq 2$). Rem. \exists nonarith latts in $\mathrm{SU}(1, n)$ for $n \leq 3$. Not known whether they exist when $n \geq 4$. Eg. If $a_2, \ldots, a_{n+1} \in \mathbb{Z}^+$, then $\bullet G = \mathrm{SO}(x_1^2 - a_2 x_2^2 - a_3 x_3^2 - \cdots - a_{n+1} x_{n+1}^2)^\circ$ $\cong \mathrm{SO}(1, n)^\circ;$ $\bullet \Gamma = G_{\mathbb{Z}}$ is an arithmetic lattice in G; and $\bullet G/\Gamma$ is compact iff $\not\exists$ nontriv \mathbb{Z} -solns of $x_1^2 = a_2 x_2^2 + \cdots + a_{n+1} x_{n+1}^2$. Rem. Γ noncocpct, arith latt in $\mathrm{SO}(n, 1)$ $\Rightarrow \Gamma$ is as described in the example (up to commensurability and conjs) if $n \neq 7$ (triality causes a problem). The cocpct latts can also be constructed explicitly.

Gromov and Piatetski-Shapiro's

Nonarithmetic Lattices in SO(1, n)

Dave Witte

2

 To make nonarith latts, take geometric view: consider the locally symmetric space Γ\\$\$ⁿ. Defn. Riemannian manifold M is hyperbolic: M is locally isometric to \$\$\$^n\$, and M is connected, complete and orientable. Prop. M hyperbolic of finite volume \$	Thm. Suppose • $M_1, M_2 = connected, orientable n-mflds,$ • $C_j = closed (n - 1)$ -submanifold of M_j , • $f: C_1 \rightarrow C_2$ any homeomorphism. Cut M_j open along $C_j: M'_j = mfld$ with bdry. Glue M'_1 to M'_2 along bdry (via f): get $M'_1 \cup_f M'_2$. Glue M'_1 to M'_2 along bdry (via f): get $M'_1 \cup_f M'_2$. Then $M'_1 \cup_f M'_2$ is an n-manifold (without bdry). • Compact $\Leftrightarrow M_1$ and M_2 are compact. • Conn \Leftrightarrow either $M_1 \setminus C_1$ or $M_2 \setminus C_2$ is conn.
May not be Piemennian (in natural way) even if	Thm

May not be Riemannian (in natural way), even if f is an isometry.

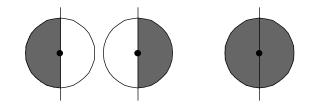
Eq. Let $M'_1 = M'_2 = D^2$ closed unit disk in \mathbb{R}^2 . Glue M'_1 to M'_2 along boundary to get 2-sphere. M'_1 and M'_2 are flat, but S^2 has no flat metric.

Require C_j to be totally geodesic hypersurface: (closed) image of \mathfrak{H}^{n-1} in $\Gamma \setminus \mathfrak{H}^n$.

Prop.

- M_1, M_2 hyperbolic (of finite volume),
- C_1, C_2 totally geodesic hypersurfaces,
- $f: C_1 \to C_2$ isometry

```
\Rightarrow M'_1 \cup_f M'_2 is hyperbolic (of finite volume).
```



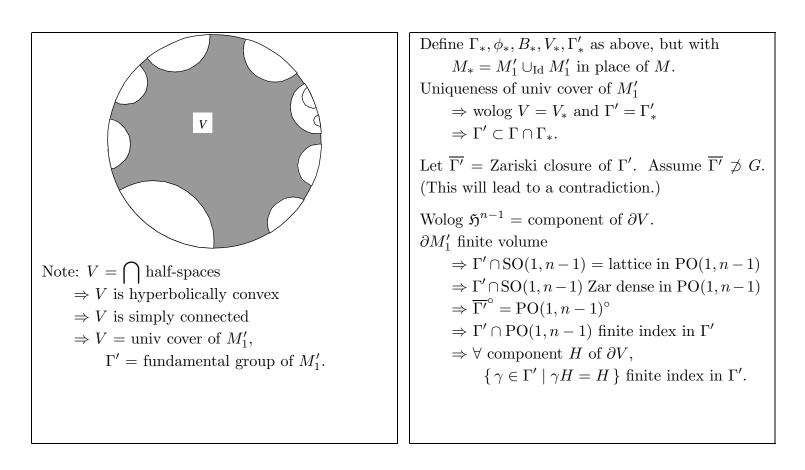
Thm.

- $M'_1 \cup_f M'_2$ arithmetic,
- C_1, C_2 finite volume (as (n-1)-manifolds),
- $M_1 \setminus C_1, M_2 \setminus C_2$ connected
- $\Rightarrow M_1$ is commensurable to M_2 .

I.e., finite cover of one \cong finite cover of other.

Proof. We show $M'_1 \cup_f M'_2$ commensurable to M_1 .

- Let $M = M'_1 \cup_f M'_2$.
- Write $M = \Gamma \setminus \mathfrak{H}^n$.
- Let $\phi: \mathfrak{H}^n \to M$ be the covering map.
- Let $B = \phi^{-1}(\partial M'_1) = \bigcup$ disjoint \mathfrak{H}^{n-1} 's.
- Let V = closure of some component of $\mathfrak{H}^n \setminus B$ that contains a point of $\phi^{-1}(M'_1)$.
- Let $\Gamma' = \{ \gamma \in \Gamma \mid \gamma V = V \}$ = $\{ \gamma \in \Gamma \mid \gamma V \cap V \text{ nonempty interior } \}$, so $M'_1 = \phi(V) \cong \Gamma' \setminus V$.



Choose two components H_1 and H_2 . Assume $\Gamma'H_1 = H_1$ and $\Gamma'H_2 = H_2$. For simplicity, assume dist $(H_1, H_2) > 0$. (E.g., if $\partial M'_1$ is compact.) Negative curvature $\Rightarrow \exists ! p \in H_1$, dist $(p, H_2) = \text{dist}(H_1, H_2)$. Uniqueness of p $\Rightarrow \Gamma'$ fixes p $\Rightarrow \Gamma'$ is finite (bcs properly discontinuous) $\Rightarrow \partial M'_1 \supset \Gamma' \setminus H_1$ has infinite volume. $\rightarrow \leftarrow$ C_j Suff

Thm. $M'_1 \cup_f M'_2$ arithmetic $\Rightarrow M_1$ is commensurable to M_2 . **Cor.** \exists nonarithmetic lattice Γ in SO(1, n). Proof. • $B_j(x) = x_1^2 - x_2^2 - x_3^2 - \dots - x_n^2 - jx_{n+1}^2$ • $\Gamma_1 \approx \mathrm{SO}(B_1; \mathbb{Z})$ • $\Gamma_2 \approx h^{-1} \operatorname{SO}(B_2, \mathbb{Z}) h$ • $h = \operatorname{diag}(1, 1, \dots, 1, \sqrt{2}) \in \operatorname{GL}(n+1, \mathbb{R})$ • $M_i = \Gamma_i \setminus \mathfrak{H}^n$ • $C_j = \text{image of } \mathfrak{H}^{n-1} \text{ in } M_j$ • $\hat{\Gamma}_i = \Gamma_i \cap \mathrm{SO}(1, n-1)$ $C_i \cong \hat{\Gamma}_i \setminus \mathfrak{H}^{n-1}$ and $\hat{\Gamma}_1 = \hat{\Gamma}_2$, $\Rightarrow C_1 \cong C_2.$ $\Rightarrow \exists M_1' \cup_f M_2'.$ Suffices to show M_1 not commensurable to M_2 . I.e., Γ_1 not commensurable to conj of Γ_2 .

Easy if n is odd.

Lem.

 \bullet n odd,

• $\exists g \in O(1, n)$, s.t. $g\Gamma_1 g^{-1}$ commens to Γ_j

 \Rightarrow *j* is a perfect square.

Proof. Unique Γ_1 -invariant quadratic form is B_1 , up to a scalar multiple.

Hence, existence of g implies $B_1 = B_j$, up to

- \bullet scalar from \mathbb{Q}^{\times} and
- change of basis from $\operatorname{GL}(n+1,\mathbb{Q})$.

Discriminant of λB_j is $\lambda^{n+1}j$ (a square times j). Change of basis multiplies by $(\det)^2$.

Rem. M_1 is commensurable to M_2 if n is even. But Γ is not arithmetic:

 $n-1 \text{ odd} \Rightarrow \Gamma \cap \mathrm{SO}(1, n-1) \text{ not arithmetic.}$

Rem. We constructed a noncocompact lattice, but the same method also yields a cocompact lattice.

References

M. Gromov and I. Piatetski-Shapiro: Nonarithmetic groups in Lobachevsky spaces, *Publ. Math. IHES* 66 (1988) 93–103. MR 89j:22019

G. A. Margulis:Discrete Subgroups of Semisimple Lie Groups.Springer, New York, 1991.

D. Witte: Introduction to Arithmetic Groups (in progress). http://www.math.okstate.edu/~dwitte

