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Abstract. A subset X “boundedly generates” a group G if every
element g of G is the product of a bounded number of elements of X.
This is a very powerful notion in abstract group theory, but geometric
group theorists may need the bounded generation to be “efficient,”
which means that each g can be written as a bounded number of
elements of X whose sizes are bounded by a constant times the word
length of g. Twenty-five years ago, Lubotzky, Mozes, and Raghunathan
observed that SL(n,Z) is efficiently boundedly generated by the
elements of its natural SL(2,Z) subgroups. We will explain the proof of
this result, and discuss a recent generalization to other arithmetic
groups. This is joint work with A. Brown, D. Fisher, and S. Hurtado.
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Bounded generation

Linear algebra
Subspaces X1, . . . , Xk span V if V=X1+X2+· · ·+Xk.

I.e., ∀v ∈V , v = x1 +x2 + · · · +xk (xi ∈Xi).

Group theory
Subgroups H1, . . . ,Hk generate G if

∀g ∈G, ∃ℓ, g = h1h2 · · ·hℓ (hi ∈H∗).

Modern group theory (Rapinchuk 1990)
Subgroups H1, . . . ,Hk boundedly generate G if

∃ℓ, ∀g ∈G, g = h1h2 · · ·hℓ (hi ∈H∗).
I.e., G = H1H2 · · ·Hkℓ. (subscripts modulo k)
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Modern group theory (Rapinchuk 1990)
Subgroups H1, . . . ,Hk boundedly generate G if

G = H1H2 · · ·Hℓ. (subscripts modulo k)

G is boundedly generated if it is boundedly
generated by cyclic groups: G = ⟨x1⟩⟨x2⟩ · · · ⟨xℓ⟩.

Exer. nonabelian Free groups not bddly gen’d.
(

Burnside
groups

)

Exer. SL(2,Z) is not bddly gen’d. (finite-index free subgrp)

Theorem (Carter-Keller 1983)
SL(n,Z) is bddly gen’d if n ≥ 3. (by elementary matrices)

Theorem (Carter-Keller-Paige 1990’s)

SL
(
2,Z[

√
2]
)

bddly gen’d. [Morgan-Rapinchuk-Sury ℓ ≤ 9]
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Exer. G bddly gen’d, acts by isometries on X, each
cyclic subgrp has a bdd orbit ⇒ G has a bdd orbit.

Exer. G bddly gen’d ⇒ no ∞-index subgrp intersects
every nontrivial subgroup of G nontrivially.

Theorem (Rapinchuk 1990)
G bddly gen’d ⇒ G is abstractly superrigid:

<∞ irred representations of each finite dim’n.
(unless finite-index subgroup has ∞ abelianization)

Theorem (Lubotzky, Platonov-Rapinchuk 1991)
G bddly gen’d nonuniform arithmetic group,

⇒ G has congruence subgroup property
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Efficient bounded generation
Linear algebra
Subspaces X1, . . . , Xr span V if ∀v ∈V ,

v = x1 + x2 + · · · + xk (xi ∈Xi).
Can choose xi with ∥xi∥ ≤ C∥v∥.
Geometric group theory
H1, . . . ,Hr efficiently boundedly generate G if

∃ℓ, ∀g ∈G, g = h1h2 · · ·hℓ (hi ∈H∗)
and ℓG(hi)ℓG(hi)ℓG(hi)≤≤≤ C ℓG(g)ℓG(g)ℓG(g).

Fix finite gen set S of G. ℓG(g) = min{ℓ | g = s1 · · · sℓ, si ∈ S± 1}.

Open problem
SL(n,Z) eff’ly bddly gen’d? (by elem mats)? (∃n ≥ 3?)

(Then would be true for all larger n.)
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Open problem
SL(n,Z) eff’ly bddly gen’d? (by elem mats)? (∃n ≥ 3?)

(Then would be true for all larger n.)

Theorem (Lubotzky-Mozes-Raghunathan 1993)
∀γ ∈ SL(n,Z), ℓ(γ) ≍ log∥γ∥. (n ≥ 3)

Prop [L–M–R]. ∃ℓ, ∀γ ∈ SL(n,Z), γ = s1s2 · · · sℓ
where si is 2 × 2 and ∥si∥ poly< ∥γ∥.

Defn. γ is 2 × 2 if γ = I except
(i, i), (j, j), (i, j), (j, i).

⎡
⎢⎢⎢⎢⎣

1
1

i

i

∗ ∗
1

1∗j

j

∗
1

1

⎤
⎥⎥⎥⎥⎦

(For fixed i, j, 0 SL(2,Z))
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Prop [L–M–R]. ∃ℓ, ∀γ ∈ SL(n,Z), γ = s1s2 · · · sℓ
where si is 2 × 2 and ∥si∥ poly< ∥γ∥.

Lemma

∀v =
[
x
y

]
∈Z2, ∃γ ∈ SL(2,Z), γv =

[
+
0

]

and ∥γ∥ poly< ∥v∥.

Proof.
Let d = gcd(x,y). ∃a,b ∈Z, ax − by = d.

Let γ =
[
x/d b
y/d a

] − 1

=
[

a − b
−y/d x/d

]
.

Exer. Can take |a| ≤ |y| and |b| ≤ |x| unless xy = 0.

Dave Witte Morris (Univ. of Lethbridge) Efficient bounded generation U of Virginia, May 2018 7 / 14

Prop [L–M–R]. ∃r , ∀γ ∈ SL(n,Z), γ = s1s2 · · · sℓ
where si is 2 × 2 and ∥si∥ poly< ∥γ∥.

Lem. ∀v ∈Z2, ∃γ ∈ SL2(Z), γv = [+0 ] & ∥γ∥ poly< ∥v∥

Proof of bounded generation by 2 × 2 matrices.
Replace si with inverse: we want sℓsℓ− 1 · · · s1γ = I.⎡
⎢⎣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤
⎥⎦ 1,2
!

⎡
⎢⎣
+ ∗ ∗
0 ∗ ∗
∗ ∗ ∗

⎤
⎥⎦ 1,3
!

⎡
⎢⎣
+ ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎤
⎥⎦

2,3
!

⎡
⎢⎣
+ ∗ ∗
0 + ∗
0 0 ∗

⎤
⎥⎦=

⎡
⎢⎣

1 ∗ ∗
0 1 ∗
0 0 1

⎤
⎥⎦! · · ·!

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦
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Theorem (Lubotzky-Mozes-Raghunathan 1993)
∀γ ∈ SL(n,Z), ℓ(γ) ≍ log∥γ∥. (n ≥ 3)

Generalization (L-M-R 2000)
G = simple algebraic Q-group, rankRG ≥ 2

⇒ ∀γ ∈G(Z), ℓ(γ) ≍ log∥γ∥.
Lem [LMR]. SLn(Z) eff’ly bddly gen’d by standard SL2(Z)’s.

Theorem (Brown-Fisher-Hurtado 2017)
SL(n,Z) acts by diffeos on cpct M , dimM < n − 1

⇒ action is via a finite group.

Lem[LMR]. G(Z) eff’ly gen’d∗by standardQ-rank-1 subgrps.

Proposition (Brown-Fisher-Hurtado-Morris 2018+)
G(Z) eff’ly bddly gen’d∗by standard Q-rank-1 subgrps.
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Definition
Q-rank Γ = dim( far-away view of G/Γ )
G/Γ compact

Q-rank Γ
= dim(•)
= 0

G/Γ has cusps

Q-rank Γ
= dim( Y)
= 1

G/Γ worse

Q-rank Γ
= dim( " )
> 1
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Proposition (Brown-Fisher-Hurtado-Morris 2018+)
G(Z) eff’ly bddly gen’d∗ by standard Q-rank-1 subgrps.

⎡
⎢⎣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤
⎥⎦ 1,2
!

⎡
⎢⎣
+ ∗ ∗
0 ∗ ∗
∗ ∗ ∗

⎤
⎥⎦ 1,3
!

⎡
⎢⎣
+ ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎤
⎥⎦ 2,3
!

⎡
⎢⎣
+ ∗ ∗
0 + ∗
0 0 ∗

⎤
⎥⎦

Place to zero-out = Q-root α.
Bruhat decomp: γ = u1u2 · · ·ur p
ui ∈Gαi(Q), p upper triangular.

standard Q-rank-1 subgroup
= ⟨Gα,2α,G−α,− 2α⟩ = G± α

Use G± α(Z) to zero-out the root α.
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Use G± α(Z) to zero-out the root α.
γ = uαuβ · · ·uζ p G± α = ⟨Gα,2α,Gα,− 2α⟩

G± α(Q) = G± α(Z) F Pα(Q).
F is a finite subset of Gα(Q) (Reduction theory)

uα = γα f pα
Multiply by γα− 1 to annihilate uα:

γ− 1
α γ =

γ− 1
α

f

pα

uβ′ · · ·uζ ′p′
Annihilate u′β with element of f G± β(Z) f − 1.

Conjugate by elements of a finite set, so still have a
finite collection of standard Q-rank-1 subgroups.

Efficient [L-M-R]: ∥γα∥ poly< ∥uα∥+ denom(uα) poly< ∥γ∥.
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