Efficient bounded generation

Dave Witte Morris

University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Abstract. A subset *X* "boundedly generates" a group *G* if every element *g* of *G* is the product of a bounded number of elements of *X*. This is a very powerful notion in abstract group theory, but geometric group theorists may need the bounded generation to be "efficient," which means that each *g* can be written as a bounded number of elements of *X* whose sizes are bounded by a constant times the word length of *g*. Twenty-five years ago, Lubotzky, Mozes, and Raghunathan observed that $SL(n, \mathbb{Z})$ is efficiently boundedly generated by the elements of its natural $SL(2, \mathbb{Z})$ subgroups. We will explain the proof of this result, and discuss a recent generalization to other arithmetic groups. This is joint work with A. Brown, D. Fisher, and S. Hurtado.

Bounded generation

Linear algebra

Subspaces X_1, \ldots, X_k span V if $V = X_1 + X_2 + \cdots + X_k$. I.e., $\forall v \in V, v = x_1 + x_2 + \cdots + x_k \quad (x_i \in X_i)$.

Group theory

Subgroups H_1, \ldots, H_k generate *G* if $\forall g \in G, \exists \ell, g = h_1 h_2 \cdots h_\ell \quad (h_i \in H_*).$

Modern group theory (Rapinchuk 1990)

Subgroups H_1, \ldots, H_k **boundedly generate** *G* if $\exists \ell, \forall g \in G, g = h_1 h_2 \cdots h_\ell \quad (h_i \in H_*).$ I.e., $G = H_1 H_2 \cdots H_{k\ell}.$ (subscripts modulo *k*)

Modern group theory (Rapinchuk 1990)		
Subgroups H_1, \ldots, H_k boundedly generate G if $G = H_1 H_2 \cdots H_\ell$. (subscripts modulo k)		
<i>G</i> is <i>boundedly generated</i> if it is boundedly generated by cyclic groups: $G = \langle x_1 \rangle \langle x_2 \rangle \cdots \langle x_\ell \rangle$.		
Exer. nonabelian Free groups <u>not</u> bddly gen'd. (^{Burnside} groups)		
Exer. SL(2, \mathbb{Z}) is not bddly gen'd. (finite-index free subgrp)		
Theorem (Carter-Keller 1983)		
$SL(n, \mathbb{Z})$ is bddly gen'd if $n \ge 3$. (by elementary matrices)		
Theorem (Carter-Keller-Paige 1990's)		
SL(2, $\mathbb{Z}[\sqrt{2}]$) <i>bddly gen'd.</i> [Morgan-Rapinchuk-Sury $\ell \le 9$]		

Exer. *G* bddly gen'd, acts by isometries on *X*, each cyclic subgrp has a bdd orbit \Rightarrow *G* has a bdd orbit.

Exer. *G* bddly gen'd \Rightarrow no ∞ -index subgrp intersects every nontrivial subgroup of *G* nontrivially.

Theorem (Rapinchuk 1990)

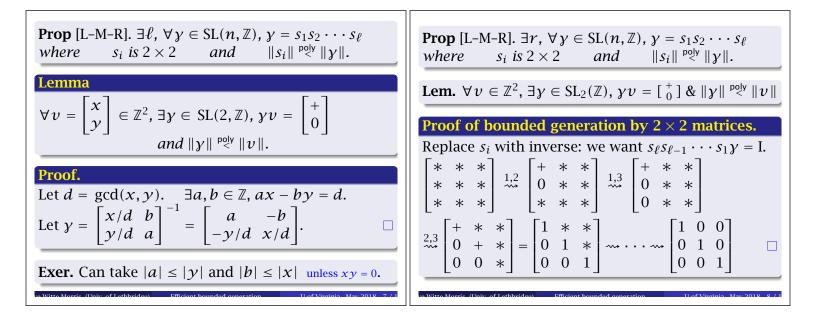
 $\begin{array}{l} G \ bddly \ gen'd \Rightarrow G \ is \ abstractly \ superrigid: \\ < \infty \ irred \ representations \ of \ each \ finite \ dim'n. \\ (unless \ finite-index \ subgroup \ has \ \infty \ abelianization) \end{array}$

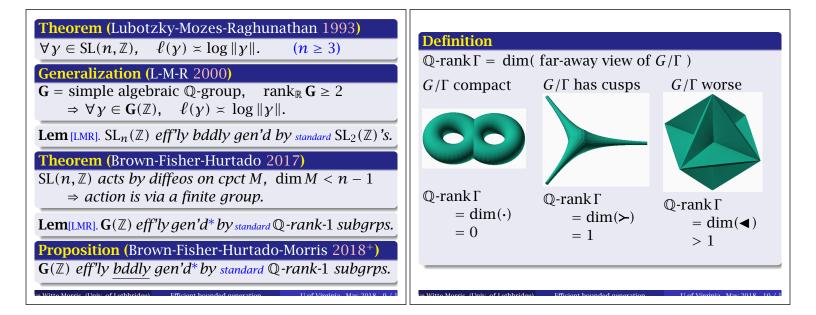
Theorem (Lubotzky, Platonov-Rapinchuk 1991)

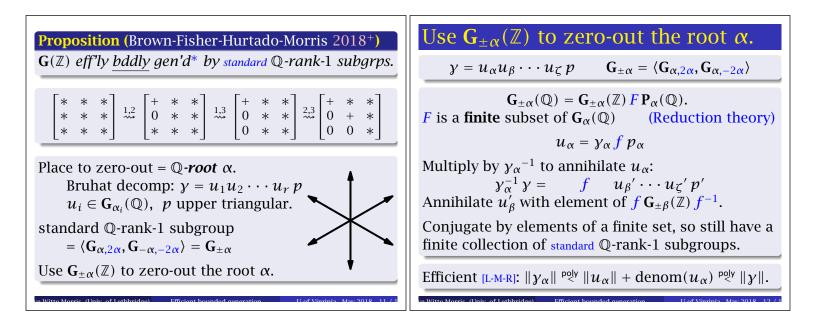
G bddly gen'd nonuniform arithmetic group, ⇒ *G* has congruence subgroup property

Efficient bounded generation		
Linear algebra		
Subspaces X_1, \ldots, X_r <i>span</i> V if $\forall v \in V$,		
$v = x_1 + x_2 + \cdots + x_k (x_i \in X_i).$		
Can choose x_i with $ x_i \le C v $.		
Geometric group theory		
$\begin{array}{l} H_1, \dots, H_r \text{ efficiently boundedly generate } G \text{ if} \\ \exists \ell, \ \forall g \in G, \ g = h_1 h_2 \cdots h_\ell (h_i \in H_*) \\ \underline{\text{and}} \ell_G(h_i) \leq C \ell_G(g). \end{array}$		
Fix finite gen set <i>S</i> of <i>G</i> . $\ell_G(g) = \min\{\ell \mid g = s_1 \cdots s_\ell, s_i \in S^{\pm 1}\}.$		
Open problem		
SL (n, \mathbb{Z}) eff'ly bddly gen'd? (by elem mats)? $(\exists n \ge 3?)$ (Then would be true for all larger n .)		

Open problem		
$SL(n, \mathbb{Z})$ eff'ly bddly gen'd? (by elem mats)? ($\exists n \ge 3$?) (Then would be true for all larger <i>n</i> .)		
Theorem (Lubotzky-Mozes-Raghunathan 1993)		
$\forall \gamma \in \mathrm{SL}(n,\mathbb{Z}), \ell(\gamma) \asymp \log \ \gamma\ . \qquad (n \ge 3)$		
Prop [L-M-R]. $\exists \ell, \forall \gamma \in SL(n, \mathbb{Z}), \gamma = s_1 s_2 \cdots s_\ell$ where $s_i \text{ is } 2 \times 2$ and $\ s_i\ \stackrel{\text{poly}}{=} \ \gamma\ $.		
Defn. γ is 2×2 if $\gamma = I$ except (i, i), (j, j), (i, j), (j, i). $i \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & & & \\ & & & &$		
(For fixed $i, j, \cong SL(2, \mathbb{Z})$)		
Vitto Morris (Univ. of Lotheridge) Efficient bounded generation U of Virginia May 2018 6 / 1		







References	Bounded generation
A. Lubotzky, S. Mozes, and M. S. Raghunathan: Cyclic subgroups of exponential growth and metrics on discrete groups. <i>C. R. Acad. Sci. Paris</i> 317 (1993) 735–740. MR 1244421	 A. S. Rapinchuk: Congruence subgroup problem for algebraic groups: old and new. <i>Astérisque</i> 209 (1992) 73-84. MR 1211004 A. S. Rapinchuk: Representations of groups of finite width, <i>Soviet Math. Dokl.</i> 42 (1991) 816-820. MR 1099467
A. Lubotzky, S. Mozes, and M. S. Raghunathan: The word and Riemannian metrics on lattices of semisimple groups. <i>Inst. Hautes Études Sci. Publ. Math.</i> 91 (2000) 5–53. MR 1828742	A. V. Morgan, A. S. Rapinchuk, and B. Sury: Bounded generation of SL_2 over rings of <i>S</i> -integers with infinitely many units. https://arxiv.org/abs/1708.09262 Wikipedia: "boundedly generated group"