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Eg. G = SL(2,R) is transitive on X = R
2 − {0}.

(So X is a homogeneous space.)

Let F = unit circle (compact).

F

gF

∀g ∈ G, gF ∩ F �= ∅.

There is a compact subset of X that cannot be
moved disjoint from itself.
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∀g ∈ G, gF ∩ F �= ∅.

Group-theoretic restatement.

Stabilizer of point v =
(

1
0

)
is H =

(
1 ∗
0 1

)

so X ∼= G/H.

Let C ⊂ G (compact) with Cv = F .

∅ �= gF ∩ F = gCv ∩ Cv = gCH ∩ CH

⇒ gc1h1 = c2h2

⇒ g ∈ CHC−1

Defn. H is a Cartan-decomposition subgrp (CDS):

• ∃ compact C ⊂ G, such that G = CHC

• H is closed and connected.

Rem. C is only a subset, not a subgroup.

Can C always be chosen to be a subgroup?
(I think not.)
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Motivation. Tessellation:
symmetric tiling of a homogeneous space X.

∀ tiles T1, T2, ∃ isometry φ,
φ(T1) = T2 and φ(tile) = tile

Let Γ = symmetry group of the tessellation.
Any tile is a fundamental domain for Γ\X.
So Γ\X is compact
and Γ acts properly discontinuously on X.

Defn. Γ acts properly discontinuously on X:
∀ cpct F ⊂ X,

{ γ ∈ Γ | γF ∩ F �= ∅ } is finite.
(In particular, all orbits are discrete.)
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Conversely: if
• Γ ⊂ Isom(X),
• Γ\X is compact and
• Γ acts properly discontinuously on X,

then translates of any fund domain yield a tess.

G = SL(n,R)
= (Zariski) connected, almost simple Lie grp

H = closed, connected subgroup of G

Question. Does G/H have a tessellation?
I.e., is there a discrete subgroup Γ of G, such that

• Γ acts properly discontinuously on G/H;
and

• Γ\G/H is compact?
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Easy examples.

If G/H is compact: let Γ = e.

If H is compact: let Γ be a lattice in G.

Defn. Γ is a (cocompact) lattice in G:

• Γ is discrete

• Γ\G is compact.

A. Borel proved there is a lattice in every simple G.

Assumption. Neither H nor G/H is compact.

Therefore Γ must be infinite
and Γ cannot be a lattice in G.

Prop. H is a Cartan-decomposition subgroup
⇒ G/H does not have a tessellation.

Proof. ∃ cpct F ⊂ G/H, s.t. ∀g ∈ G, gF ∩F �= ∅
⇒ Γ = { γ ∈ Γ | γF ∩ F �= ∅ } is finite. →←
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G = SL(n,R)

K = SO(n) rotations (compact)

A =




∗
∗

. . .
∗


 diagonal

N =




1 ∗ ∗ ∗
1 ∗ ∗

. . . ∗
1


 upper triangular

Cartan decomposition. G = KAK

so A is a Cartan-decomposition subgroup

Fact. G = KNK [Kostant]
so N is a Cartan-decomposition subgroup
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Prop. Every (connected, noncompact) subgrp H

of SL(2,R) is a Cartan-decomposition subgroup.

Cor. No (interesting) homogeneous space of
SL(2,R) has a tessellation.

Proof of proposition. H contains either A or N
(or a conjugate).

Better proof.

e
A+

µ(e) = e, lim
h→∞

µ(h) = ∞ ⇒ µ(H) = A+

I.e., A+ ⊂ KHK.

So G = KA+K ⊂ KHK.

Rem. µ(H) = A+ ⇔ KHK = G

⇒ H is a CDS.

Same proof. R-rankG = 1 ⇒ H is a CDS.
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Given g ∈ G.
G = KAK ⇒ ∃a ∈ A, s.t. g ∈ KaK.
But a is not unique

Let A+ =
{ (

a1

a2

) ∣∣∣∣ a1 ≥ a2 > 0
a1a2 = 1

}

= “positive Weyl chamber.”

Then ∃!a ∈ A+, s.t. g ∈ KaK.

Defn (Cartan projection). µ:G → A+

by g ∈ K µ(g)K.
µ is continuous and proper.
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H is a CDS
⇔ ∃ cpct C ⊂ G, G ⊂ CHC

⇔ ∃ cpct C ⊂ G, A+ ⊂ C µ(H)C

Can take C to be in A!

Thm (Benoist, Kobayashi). H is a CDS iff
µ(H) comes within bdd distance of every pt of A+

i.e., ∃ cpct C ⊂ A, s.t. µ(H)C ⊃ A+.

Not every subgroup of SL(3,R) is a CDS.

Eg. dimH = 1 ⇒ H is not a CDS.

A+ =





 a1

a2

a3




∣∣∣∣∣∣
a1 ≥ a2 ≥ a3 > 0

a1a2a3 = 1




↔


(s, t) ∈ (R+)2

∣∣∣∣∣∣

 s

t/s
1/t


 ∈ A+




= {(s, t) ∈ (R+)2 | s ≥ t/s ≥ 1/t}
= {(s, t) ∈ (R+)2 |

√
s ≤ t ≤ s2}
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SL(3,R): A+ ↔ {(s, t) ∈ (R+)2 |
√
s ≤ t ≤ s2}

2 4

2

4

Thm (Benoist, Kobayashi). H is a CDS iff
µ(H) comes within bdd distance of every pt of A+

Cor. dimH = 1 ⇒ H is not a CDS.

Cor. H =


 1 ∗ ∗

1 0
1


 is not a CDS.

∃k ∈
(

1
SO(2)

)
, k−1hk ∈


 1 0 ∗

1 0
1


 = U .

So µ(H) = µ(U).
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Prop.





 1 u v

1 u
1




∣∣∣∣∣∣ u, v ∈ R


 is a CDS.

Suffices: µ(H) within bdd dist of every pt of ∂A+.

2 4

2

4

[Does not work for SL(4,R) (or R-rankG ≥ 2).]

Actually only need one wall.
(h near one wall ⇒ h−1 near other wall.)
This is special for SL(n,R), not other G.
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How to calculate µ(h).

A+ =





 s

t/s
1/t




∣∣∣∣∣∣
√
s ≤ t ≤ s2




2 4

2

4

For a ∈ A+:
sa ≈ ‖a‖
ta ≈ ‖a−1‖

For g ∈ G:
sµ(g) ≈ ‖µ(g)‖ = ‖k1gk2‖ = ‖g‖
tµ(g) ≈ ‖µ(g)−1‖ = ‖g−1‖

Thus, µ(g) ↔
(
‖g‖, ‖g−1‖

)
.

so µ


 1 u 0

1 u
1


 ≈

(
|u|, u2

)
is near a wall.
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Thm (O–W).
Every CDS of SL(3,R) contains a conjugate of:

A,



 1 r s

0 1 r
0 0 1




∣∣∣∣∣∣ r, s ∈ R


,





 et tet s

0 et r
0 0 e−2t




∣∣∣∣∣∣ r, s, t ∈ R


 ,





 ept r 0

0 eqt 0
0 0 e−(p+q)t




∣∣∣∣∣∣ r, t ∈ R


 ,

(max{p, q} = 1, min{p, q} ≥ −1/2), or



 et cos pt et sin pt s

−et sin pt et cos pt r
0 0 e−2t




∣∣∣∣∣∣ r, s, t ∈ R




(p �= 0).
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Thm (Benoist, O-W). If G = SL(3,R),
then G/H does not have a tessellation.

[Benoist proved for H = SL(2,R).
Same method for other subgroups.]

In general [Benoist], for R-rankG = 2:

∃ representations ρ1 and ρ2 of G,
s.t. µ(g) ≈

(
‖ρ1(g)‖, ‖ρ2(g)‖

)
.

Walls are given by ‖ρ1(g)‖ = ‖ρ2(g)‖ci .

Eg. G = SL(3,R).
ρ1(g) = g, ρ2(g) = (g−1)T

c1 = 1/2, c2 = 2

Eg. G = SO(2, n) or SU(2, n).
ρ1(g) = g, ρ2(g) = g ∧ g

c1 = 1, c2 = 2
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SO(2, n) = Isom
(
v1vn+2 + v2vn+1 +

∑n

i=3
v2

i

)

a + n =







τ1 φ x η 0
τ2 y 0 −η

0 −yT −xT

−τ2 −φ
−τ1







t1, t2, φ, η ∈ R, x, y ∈ R
n−2

α

β

α+β α+2β
x

y

φ η
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Thm (O–W). H ⊂ N is a CDS if

• dimH = 2, uα+2β ⊂ h, ∃u ∈ h s.t. φuyu �= 0;
or

• dimH ≥ 2,
• ∃u ∈ h s.t. dim〈(φu, xu), (0, yu)〉 = 1;
• ∃v ∈ h s.t. either

• dim〈(φv, xv), (0, yv)〉 = 2 or
• yv = 0 and ‖xv‖2 = −2φvηv.

Thm (O–W). H ⊂ N is not a CDS if

• dimH ≤ 1; or

• ∀u ∈ h, φu = 0 and dim〈xu, yu〉 �= 1; or

• ∀u ∈ h, φu = 0 and dim〈xu, yu〉 = 1; or

• ∃ X0 ⊂ R
n−2, x0 ∈ X0, x′ ∈ X⊥

0 , η0 ∈ R s.t.
• ‖x0‖2 − ‖x′‖2 − 2η0 < 0,
• ∀u ∈ h, yu = 0, xu ∈ φux

′ + X0,
and ηu = φuη0 + x0 · x.
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For u ∈ n, exp(u) =


1 φ x +
φy

2

η − x · y
2

−φ‖y‖2

6

−φη − ‖x‖2

2

+
φ2‖y‖2

24

1 y −‖y‖2

2

−η − x · y
2

+
φ‖y‖2

6

Id −yT −xT +
φyT

2

1 −φ

1
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Thm (Kobayashi). H,L ⊂ AN and L ⊂ CHC.
If dimL > dimH, then G/H does not have a tess.

Thm (O–W). H ⊂ AN , dimH ≥ 2.
If � ∃L ⊂ AN , s.t. L ⊂ CHC and dimL > dimH,
then

• H ∼ SO(1, n) ∩AN ; or

• H ∼ L5 ∩AN ; or

• n even and H ∼ HB; or

• n odd, dimH = n− 1, SU(1, n−1
2 ) ⊂ CHC.

Proof. Inspect list of non-CDS subgroups, com-
pare image of Cartan projection.

Eg. ∀h ∈ SU(1,  n/2!), we have µ(h) ≈ ‖h‖2.

If ∃hn → ∞ in H, s.t. µ(hn) ≈ ‖hn‖2,
then ∃ cpct C ⊂ G with SU(1,  n/2!) ⊂ CHC.
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L5
∼= PSL(2,R)
= image of 5-dim’l rep of SL(2,R).

hB =





 τ 0 x η 0

τ B(x) 0 −η
. . .




∣∣∣∣∣∣
x ∈ R

2m−2

t, η ∈ R




B: Rn−2 → R
n−2 has no real eigenvalues
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• H ∼ SO(1, n) ∩AN

n even: G/H has a tess [Kulkarni]
(Γ ⊂ SU(1, n/2))

n odd: G/H has no tess [Kulkarni]

• H ∼ L5 ∩AN

L5 is tempered in G [Oh],
so G/H has no tess [Margulis]

• n even and H ∼ HB

G/H has a tess
(Γ ⊂ SO(1, n))

special case [Kulkarni]: SU(1, n/2) ∩AN

• n odd, dimH = n− 1, SU(1, n−1
2 ) ⊂ CHC.

Conj. G/SU
(
1, n−1

2

)
has no tess. ???
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