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Abstract

We present the main ideas of a nice proof (due to

D. Carter, G. Keller, and E. Paige) that every matrix in

SL(3,Z) is a product of a bounded number of elemen-

tary matrices. The two main ingredients are the Com-

pactness Theorem of first-order logic and calculations

of Mennicke symbols. (These symbols were developed

in the 1960s in order to prove the Congruence Sub-

group Property.) Similar methods apply to SL(2, A) if

A = Z[
√

2] (or any other ring of integers with infinitely

many units).

Thm (Carter-Keller). SL(3,Z) is boundedly generated by

elementary matrices.

Eg. Elementary matrices:1 25 0
0 1 0
0 0 1

,

 1 0 0
0 1 0
−8 0 1

,

1 0 0
0 1 16
0 0 1

.

Recall. Every invertible matrix can be reduced to Id by

elementary column operations.

Prop. T ∈ SL(3,Z) ⇒ T � Id by Z column operations.

Prop. T ∈ SL(3,Z) ⇒ T � Id by Z column operations.

Eg.

[
13 5
31 12

]
�

[
3 5
7 12

]
�

[
3 2
7 5

]

�

[
1 2
2 5

]
�

[
1 0
2 1

]
�

[
1 0
0 1

]
.

Cor. T ∈ SL(3,Z) ⇒ T = product of elementary mats.

I.e., SL(3,Z) is generated by elementary matrices.

Thm (Carter-Keller). T = prod of 48 elem mats.

So SL(3,Z) is boundedly generated by elem mats.

Remark. No such bound exists for SL(2,Z):
SL(2,Z) not boundedly generated by elem mats.

Rem. Γ = any group.

Γ has bounded generation iff ∃ finite S ⊂ Γ , integer r ,

s.t. ∀ γ ∈ Γ , γ = sk1
1 sk2

2 · · · skrr .

I.e., Γ = X1 X2 · · · Xr with Xi cyclic groups.

Thm (C–K). Γ = SL(3,Z) bddly gen’d by elem mats.

Consequences.

• Γ is superrigid (<∞ irred reps of each dim)

[Rapinchuk]

• Γ has the Congruence Subgroup Property :

SL(3, )Zp is profinite×
p

completion of SL(3,Z).
[Lubotzky, Platonov-Rapinchuk]

• SL(3,Z) has Kazhdan’s property T (with explicit ε)
Conjecture. SL

(
3,Z[x]

)
has property T . [Shalom]

• Γ has no action on R (nontriv, orient-pres). [Lifschitz-M]

How to prove bounded generation [C-K-P].

• Compactness Thm (1st-order logic) / ultraproduct

• Mennicke symbols (Algebraic K-Theory)

Prop. SL(3,Z) boundedly generated by elem mats

⇔ SL(3,Z∞) generated by elem mats.

Proof. (⇐) Contrapos: ∃ gr , not prod of r elem mats.

In SL(3,Z)∞, element (gr )∞r=1 not prod of elem mats.

So elem mats do not generate SL(3,Z)∞ 
 SL(3,Z∞).

Z∞ is a bad ring (not integral domain): use ∗Z = Z∞/p,

where p = prime ideal containing {e1,e2,. . .}
(and (xk) ∈ p ⇒ some xk is 0). (∗Z = ultraprod)

Prop. SL(3,Z) boundedly generated by elem mats

⇔ SL(3,∗Z) � 〈 elem mats 〉 (up to finite index).

Thm (Carter-Keller). SL(3,Z) bdd gen by elems.

Prove: 〈 elem mats 〉 finite index in SL(3,∗Z).
Let C = C∗Z = SL(3,∗Z) / 〈 elem mats 〉. (finite??)

Thm. A commutative ⇒ 〈 elem mats 〉 � SL(3, A).
So C is a group. In fact, C is abelian.

Step 1. Exponent of C divides 24 (i.e., x24 = e).
Step 2. C cyclic. (Any 2 elts are in same cyclic subgrp.)
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Recall C = SL(3,∗Z)/〈 elem mats 〉.
Let W = W∗Z = { (a, b) ∈ ∗Z2 | a,b rel prime }

= { 1st rows of elements of SL(2,∗Z) }.

Define
[ ]

:W → C by
[
b
a

]
≡
a b 0
∗ ∗ 0
0 0 1

.

•
[ ]

is well def’d (easy) and onto (“stable range”).

• (MS1)
[
b + ta
a

]
=
[
b
a

]
=
[

b
a+ tb

]
.

• (MS2a)
[
b1

a

] [
b2

a

]
=
[
b1b2

a

]
(need n ≥ 3).

Step 2. Any 2 elts of C are in same cyclic subgrp.

Given
[
b1

a1

]
,
[
b2

a2

]
∈ C (nontrivial).

Dirichlet: ∃ large prime p ≡ b1 (mod a1).[
b1

a1

]
=
[
p
a1

]
; we may assume b1 = p prime.

In fact, wma all ai, bi are large primes (b1 ≠ b2).

CRT: ∃ q, s.t. q ≡ ai (mod bi); wma a1 = q = a2.

(Z/qZ)× cyclic ⇒ ∃ b, ei, s.t. bi ≡ bei (mod q).[
bi
ai

]
=

[
bi
q

]
=

[
bei
q

]
=

[
b
q

]ei
∈
〈[

b
q

]〉
.

(Z/qZ)× cyclic ⇒ ∃b, ei, s.t. bi ≡ bei (mod q).[
bi
ai

]
=
[
bi
q

]
=
[
bei
q

]
=
[
b
q

]ei
∈
〈[

b
q

]〉
.

Note: Since C24 = e, only need (Z/qZ)× cyclic

modulo 24th powers.

This follows from the componentwise calculation:

(bi − z24)(bi − bz24)(bi − b2z24)· · ·(bi − b23z24)
is 0 in every coordinate.

So it is 0.

Since∗Z is integral domain, then bi = beiz24.

Thm (Liehl). SL
(
2,Z[1/2]

)
bddly gen’d by elem mats.

I.e., T � Id by Z[1/2] col ops, # steps is bdd.

Easy proof. Assume Artin’s Conjecture.

Eg. 2 is a primitive root modulo 13:

{2k} = {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7}.
Complete set of residues.

Conj (Artin). ∀r ≠ ±1, perfect square,

∃ ∞ primes q, s.t. r is prim root modulo q.

Assume ∃q in every arith progression {a+ kb}.

Thm (Liehl). SL
(
2,Z[1/2]

)
bddly gen’d by elem mats.

I.e., T � Id by Z[1/2] col ops, # steps is bdd.

Proof.

[
a b
c d

]
q = a+ kb prime, 2 is prim root

�

[
q b
∗ ∗

]
2� ≡ b (mod q); 2� = b + k′q

�

[
q 2�

∗ ∗
]

2� unit ⇒ can add anything to q

�

[
1 2�

∗ ∗
]
�

[
1 0
∗ 1

]
�

[
1 0
0 1

]
.
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