<u> </u>	ion of special linear groups July 10, 2005
Bounded generation of special linear groups Dave Witte Morris Department of Mathematics and Computer Science University of Lethbridge Lethbridge, AB T1K 3M4 Dave.Morris@uleth.ca	Abstract We present the main ideas of a nice proof (due to D. Carter, G. Keller, and E. Paige) that every matrix in $SL(3,\mathbb{Z})$ is a product of a bounded number of elemen-
	tary matrices. The two main ingredients are the Compactness Theorem of first-order logic and calculations of Mennicke symbols. (These symbols were developed in the 1960s in order to prove the Congruence Subgroup Property.) Similar methods apply to SL(2, <i>A</i>) if $A = \mathbb{Z}[\sqrt{2}]$ (or any other ring of integers with infinitely many units).
Thm (Carter-Keller). SL(3, \mathbb{Z}) <i>is boundedly generated by</i> <i>elementary matrices.</i> <i>Eg.</i> Elementary matrices: $\begin{bmatrix} 1 & 25 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -8 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 16 \\ 0 & 0 & 1 \end{bmatrix}.$ <i>Recall.</i> Every invertible matrix can be reduced to Id by elementary column operations. Prop. $T \in SL(3, \mathbb{Z}) \Rightarrow T \rightsquigarrow Id by \mathbb{Z}$ column operations.	Prop. $T \in SL(3, \mathbb{Z}) \Rightarrow T \rightsquigarrow \text{Id } by \mathbb{Z} \text{ column operations.}$ $Eg. \begin{bmatrix} 13 & 5\\ 31 & 12 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 3 & 5\\ 7 & 12 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 3 & 2\\ 7 & 5 \end{bmatrix}$ $\implies \begin{bmatrix} 1 & 2\\ 2 & 5 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0\\ 2 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}.$ Cor. $T \in SL(3, \mathbb{Z}) \Rightarrow T = \text{product of elementary mats.}$ I.e., $SL(3, \mathbb{Z})$ is generated by elementary matrices. Thm (Carter-Keller). $T = \text{prod of } 48 \text{ elem mats.}$ So $SL(3, \mathbb{Z})$ is <i>boundedly</i> generated by elem mats. <i>Remark.</i> No such bound exists for $SL(2, \mathbb{Z})$: $SL(2, \mathbb{Z})$ not boundedly generated by elem mats.
<i>Rem.</i> Γ = any group.	Thm (C-K). Γ = SL(3, \mathbb{Z}) <i>bddly gen'd by elem mats.</i>
Γ has <i>bounded generation</i> iff ∃ finite <i>S</i> ⊂ Γ, integer <i>r</i> , s.t. ∀ <i>y</i> ∈ Γ, <i>y</i> = $s_1^{k_1} s_2^{k_2} \cdots s_r^{k_r}$. I.e., Γ = $X_1 X_2 \cdots X_r$ with X_i cyclic groups.	<i>Consequences.</i> • Γ is <i>superrigid</i> (< ∞ irred reps of each dim) [Rapinchuk]
	• Γ has the <i>Congruence Subgroup Property</i> : $\times \underset{p}{\text{SL}(3,\mathbb{Z}_p)}$ is profinite completion of $\text{SL}(3,\mathbb{Z})$. [Lubotzky, Platonov-Rapinchuk]
	 SL(3, Z) has <i>Kazhdan's property</i> T (with explicit ε) <i>Conjecture</i>. SL(3, Z[x]) has property T. [Shalom]
	• Γ has no action on \mathbb{R} (nontriv, orient-pres). [Lifschitz-M]
 How to prove bounded generation [C-K-P]. Compactness Thm (1st-order logic) / ultraproduct Mennicke symbols (Algebraic K-Theory) 	Prop. $SL(3, \mathbb{Z})$ <i>boundedly generated by elem mats</i> \Leftrightarrow $SL(3, \mathbb{Z}) \doteq \langle \text{ elem mats} \rangle$ (up to finite index).
 Prop. SL(3, ℤ) boundedly generated by elem mats ⇔ SL(3, ℤ[∞]) generated by elem mats. 	Thm (Carter-Keller). SL(3, \mathbb{Z}) <i>bdd gen by elems</i> . Prove: $\langle \text{ elem mats } \rangle$ finite index in SL(3, \mathbb{Z}). Let $C = C_{\mathbb{Z}} = SL(3, \mathbb{Z}) / \langle \text{ elem mats } \rangle$. (finite??)
<i>Proof.</i> (\Leftarrow) Contrapos: $\exists g_r$, not prod of r elem mats. In SL(3, \mathbb{Z}) ^{∞} , element $(g_r)_{r=1}^{\infty}$ not prod of elem mats. So elem mats do not generate SL(3, \mathbb{Z}) ^{∞} \cong SL(3, \mathbb{Z}^{∞}).	Thm. A commutative \Rightarrow (elem mats) \triangleleft SL(3, A). So <i>C</i> is a group. In fact, <i>C</i> is abelian.
\mathbb{Z}^{∞} is a bad ring (not integral domain): use $*\mathbb{Z} = \mathbb{Z}^{\infty}/\mathfrak{p}$, where $\mathfrak{p} = \text{prime ideal containing } \{e_1, e_2,\}$ (and $(x_k) \in \mathfrak{p} \Rightarrow \text{some } x_k \text{ is } 0$). ($*\mathbb{Z} = \text{ultraprod}$)	<i>Step 1.</i> Exponent of <i>C</i> divides 24 (i.e., $x^{24} = e$). <i>Step 2. C</i> cyclic. (Any 2 elts are in same cyclic subgrp.)

C 2005 Dave Morris Bounded generat	ion of special linear groups July 10, 2005
Recall $C = SL(3, *\mathbb{Z}) / \langle \text{ elem mats } \rangle$.	<i>Step 2.</i> Any 2 elts of <i>C</i> are in same cyclic subgrp.
Let $W = W_{*\mathbb{Z}} = \{ (a, b) \in {}^*\mathbb{Z}^2 \mid a, b \text{ rel prime} \}$ = { 1st rows of elements of SL(2, ${}^*\mathbb{Z}$) }.	Given $\begin{bmatrix} b_1 \\ a_1 \end{bmatrix}$, $\begin{bmatrix} b_2 \\ a_2 \end{bmatrix} \in C$ (nontrivial).
Г. Л	Dirichlet: \exists large prime $p \equiv b_1 \pmod{a_1}$. $\begin{bmatrix} b_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} p \\ a_1 \end{bmatrix}$; we may assume $b_1 = p$ prime.
Define $\begin{bmatrix} \end{bmatrix}: W \to C$ by $\begin{bmatrix} b \\ a \end{bmatrix} \equiv \begin{bmatrix} a & b & 0 \\ * & * & 0 \\ 0 & 0 & 1 \end{bmatrix}$.	$\begin{bmatrix} a_1 \end{bmatrix}^- \begin{bmatrix} a_1 \end{bmatrix}^+$, we may assume $b_1 = p$ prime. In fact, wma all a_i, b_i are large primes $(b_1 \neq b_2)$.
• [] is well def'd (easy) and onto ("stable range").	CRT: $\exists q$, s.t. $q \equiv a_i \pmod{b_i}$; wma $a_1 = q = a_2$.
• (MS1) $\begin{bmatrix} b + ta \\ a \end{bmatrix} = \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} b \\ a + tb \end{bmatrix}$.	$(\mathbb{Z}/q\mathbb{Z})^{\times}$ cyclic $\Rightarrow \exists b, e_i, \text{ s.t. } b_i \equiv b^{e_i} \pmod{q}.$
• (MS1) $\begin{bmatrix} b+ta\\a \end{bmatrix} = \begin{bmatrix} b\\a \end{bmatrix} = \begin{bmatrix} b\\a+tb \end{bmatrix}$. • (MS2a) $\begin{bmatrix} b_1\\a \end{bmatrix} \begin{bmatrix} b_2\\a \end{bmatrix} = \begin{bmatrix} b_1b_2\\a \end{bmatrix}$ (need $n \ge 3$).	$\begin{bmatrix} b_i \\ a_i \end{bmatrix} = \begin{bmatrix} b_i \\ q \end{bmatrix} = \begin{bmatrix} b^{e_i} \\ q \end{bmatrix} = \begin{bmatrix} b \\ q \end{bmatrix}^{e_i} \in \left\langle \begin{bmatrix} b \\ q \end{bmatrix} \right\rangle.$
$(\mathbb{Z}/q\mathbb{Z})^{\times}$ cyclic $\Rightarrow \exists b, e_i, \text{ s.t. } b_i \equiv b^{e_i} \pmod{q}.$	Thm (Liehl). $SL(2, \mathbb{Z}[1/2])$ bddly gen'd by elem mats.
$\begin{bmatrix} b_i \\ a_i \end{bmatrix} = \begin{bmatrix} b_i \\ q \end{bmatrix} = \begin{bmatrix} b^{e_i} \\ q \end{bmatrix} = \begin{bmatrix} b \\ q \end{bmatrix}^{e_i} \in \left\langle \begin{bmatrix} b \\ q \end{bmatrix} \right\rangle.$	I.e., $T \rightsquigarrow \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$
Note: Since $C^{24} = e$, only need $(\mathbb{Z}/q\mathbb{Z})^{\times}$ cyclic	Easy proof. Assume Artin's Conjecture.
modulo 24th powers.	<i>Eg.</i> 2 is a <i>primitive root</i> modulo 13: $(ab) = (1 + a) + (2 + a$
This follows from the componentwise calculation:	${2^k} = {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7}.$ Complete set of residues.
$(b_i - z^{24})(b_i - bz^{24})(b_i - b^2 z^{24}) \cdots (b_i - b^{23} z^{24})$	Conj (Artin). $\forall r \neq \pm 1$, perfect square,
is 0 in every coordinate.	$\exists \infty \text{ primes } q, s.t. r \text{ is prim root modulo } q.$
So it is 0.	Assume $\exists q$ in every arith progression $\{a + kb\}$.
Since [*] \mathbb{Z} is integral domain, then $b_i = b^{e_i} z^{24}$.	
Thm (Liehl). $SL(2, \mathbb{Z}[1/2])$ bddly gen'd by elem mats.	References
Thm (Liehl). SL(2, $\mathbb{Z}[1/2]$) <i>bddly gen'd by elem mats.</i> I.e., $T \rightsquigarrow$ Id by $\mathbb{Z}[1/2]$ col ops, # steps is bdd.	References H. Bass, <i>Algebraic K-theory</i> , Benjamin, New York, 1968.
I.e., $T \rightsquigarrow \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$ <i>Proof.</i> $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $q = a + kb$ prime, 2 is prim root $\lim_{k \to 0} \begin{bmatrix} q & b \\ -a \end{bmatrix}$ $2^{\ell} = h \pmod{a}$; $2^{\ell} = h + k'a$	H. Bass, <i>Algebraic K-theory</i> , Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL _n $(n \ge 3)$ and Sp _{2n} $(n \ge 2)$, <i>Inst. Hautes</i>
I.e., $T \rightsquigarrow \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$	H. Bass, <i>Algebraic K-theory</i> , Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL_n ($n \ge 3$) and Sp_{2n} ($n \ge 2$), <i>Inst. Hautes</i> <i>Études Sci. Publ. Math.</i> 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of $SL_n(\mathcal{O})$,
I.e., $T \rightsquigarrow \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$ <i>Proof.</i> $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $q = a + kb$ prime, 2 is prim root $\lim_{k \to 0} \begin{bmatrix} q & b \\ -a \end{bmatrix}$ $2^{\ell} = h \pmod{a}$; $2^{\ell} = h + k'a$	H. Bass, Algebraic K-theory, Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL_n ($n \ge 3$) and Sp_{2n} ($n \ge 2$), Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of $SL_n(\mathcal{O})$, Amer. J. Math. 105 (1983), 673–687. D. Carter and G. Keller, Elementary expressions for unimodular
I.e., $T \sim \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$ Proof. $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $q = a + kb$ prime, 2 is prim root $\sim \begin{bmatrix} q & b \\ * & * \end{bmatrix}$ $2^{\ell} \equiv b \pmod{q}; 2^{\ell} = b + k'q$	H. Bass, Algebraic K-theory, Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL _n $(n \ge 3)$ and Sp _{2n} $(n \ge 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of SL _n (\mathcal{O}), Amer. J. Math. 105 (1983), 673–687. D. Carter and G. Keller, Elementary expressions for unimodular matrices, Comm. Algebra 12 (1984), 379–389. D. Carter, G. Keller, and E. Paige: Bounded expressions in SL(n, A),
I.e., $T \rightsquigarrow \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$ Proof. $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $q = a + kb$ prime, 2 is prim root $\sim \begin{bmatrix} q & b \\ * & * \end{bmatrix}$ $2^{\ell} \equiv b \pmod{q}; 2^{\ell} = b + k'q$ $\sim \begin{bmatrix} q & 2^{\ell} \\ * & * \end{bmatrix}$ $2^{\ell} \text{ unit } \Rightarrow \text{ can add } anything \text{ to } q$ $\sim \begin{bmatrix} 1 & 2^{\ell} \\ * & * \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$	H. Bass, <i>Algebraic K-theory</i> , Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL _n $(n \ge 3)$ and Sp _{2n} $(n \ge 2)$, <i>Inst. Hautes</i> <i>Études Sci. Publ. Math.</i> 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of SL _n (\mathcal{O}), <i>Amer. J. Math.</i> 105 (1983), 673–687. D. Carter and G. Keller, Elementary expressions for unimodular matrices, <i>Comm. Algebra</i> 12 (1984), 379–389. D. Carter, G. Keller, and E. Paige: Bounded expressions in SL(<i>n</i> , <i>A</i>), (unpublished). I. V. Erovenko and A. Rapinchuk, Bounded generation of some <i>S</i> - arithmetic orthogonal groups, <i>C. R. Acad. Sci. Paris Sér. I Math.</i> 333 (2001), no. 5, 395–398.
I.e., $T \rightsquigarrow \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$ Proof. $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $q = a + kb$ prime, 2 is prim root $\sim \begin{bmatrix} q & b \\ * & * \end{bmatrix}$ $2^{\ell} \equiv b \pmod{q}; 2^{\ell} = b + k'q$ $\sim \begin{bmatrix} q & 2^{\ell} \\ * & * \end{bmatrix}$ $2^{\ell} \text{ unit } \Rightarrow \text{ can add } anything \text{ to } q$ $\sim \begin{bmatrix} 1 & 2^{\ell} \\ * & * \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$	H. Bass, Algebraic K-theory, Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL _n $(n \ge 3)$ and Sp _{2n} $(n \ge 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of SL _n (\mathcal{O}), Amer. J. Math. 105 (1983), 673–687. D. Carter and G. Keller, Elementary expressions for unimodular matrices, Comm. Algebra 12 (1984), 379–389. D. Carter, G. Keller, and E. Paige: Bounded expressions in SL(n, A), (unpublished). I. V. Erovenko and A. Rapinchuk, Bounded generation of some S- arithmetic orthogonal groups, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 5, 395–398. A. S. Rapinchuk: Representations of groups of finite width, Soviet Math. Dokl. 42 (1991), no. 3, 816–820.
I.e., $T \rightsquigarrow \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$ Proof. $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $q = a + kb$ prime, 2 is prim root $\sim \begin{bmatrix} q & b \\ * & * \end{bmatrix}$ $2^{\ell} \equiv b \pmod{q}; 2^{\ell} = b + k'q$ $\sim \begin{bmatrix} q & 2^{\ell} \\ * & * \end{bmatrix}$ $2^{\ell} \text{ unit } \Rightarrow \text{ can add } anything \text{ to } q$ $\sim \begin{bmatrix} 1 & 2^{\ell} \\ * & * \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$	H. Bass, <i>Algebraic K-theory</i> , Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL _n $(n \ge 3)$ and Sp _{2n} $(n \ge 2)$, <i>Inst. Hautes</i> <i>Études Sci. Publ. Math.</i> 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of SL _n (\mathcal{O}), <i>Amer. J. Math.</i> 105 (1983), 673–687. D. Carter and G. Keller, Elementary expressions for unimodular matrices, <i>Comm. Algebra</i> 12 (1984), 379–389. D. Carter, G. Keller, and E. Paige: Bounded expressions in SL(<i>n</i> , <i>A</i>), (unpublished). I. V. Erovenko and A. Rapinchuk, Bounded generation of some <i>S</i> - arithmetic orthogonal groups, <i>C. R. Acad. Sci. Paris Sér. I Math.</i> 333 (2001), no. 5, 395–398. A. S. Rapinchuk: Representations of groups of finite width, <i>Soviet</i> <i>Math. Dokl.</i> 42 (1991), no. 3, 816–820. Y. Shalom: Bounded generation and Kazhdan's property (<i>T</i>), <i>Inst.</i> <i>Hautes Études Sci. Publ. Math.</i> No. 90, (1999), 145–168 (2001).
I.e., $T \sim \text{Id}$ by $\mathbb{Z}[1/2]$ col ops, # steps is bdd. Proof. $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $q = a + kb$ prime, 2 is prim root $\sim \begin{bmatrix} q & b \\ * & * \end{bmatrix}$ $2^{\ell} \equiv b \pmod{q}$; $2^{\ell} = b + k'q$ $\sim \begin{bmatrix} q & 2^{\ell} \\ * & * \end{bmatrix}$ 2^{ℓ} unit \Rightarrow can add <i>anything</i> to q $\sim \begin{bmatrix} 1 & 2^{\ell} \\ * & * \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. \Box I. V. Erovenko and A. Rapinchuk, Bounded generation of <i>S</i> - arithmetic subgroups of isotropic orthogonal groups over number fields, (preprint). B. Liehl: Beschränkte Wortlänge in SL ₂ . <i>Math. Z.</i> 186 (1984), no. 4, 509–524. L. Lifschitz and D. W. Morris: Isotropic nonarchimedean <i>S</i> - arithmetic groups are not left orderable, <i>C. R. Math. Acad. Sci.</i>	H. Bass, <i>Algebraic K-theory</i> , Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL _n $(n \ge 3)$ and Sp _{2n} $(n \ge 2)$, <i>Inst. Hautes</i> <i>Études Sci. Publ. Math.</i> 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of SL _n (\mathcal{O}), <i>Amer. J. Math.</i> 105 (1983), 673–687. D. Carter and G. Keller, Elementary expressions for unimodular matrices, <i>Comm. Algebra</i> 12 (1984), 379–389. D. Carter, G. Keller, and E. Paige: Bounded expressions in SL(<i>n</i> , <i>A</i>), (unpublished). I. V. Erovenko and A. Rapinchuk, Bounded generation of some <i>S</i> - arithmetic orthogonal groups, <i>C. R. Acad. Sci. Paris Sér. I Math.</i> 333 (2001), no. 5, 395–398. A. S. Rapinchuk: Representations of groups of finite width, <i>Soviet</i> <i>Math. Dokl.</i> 42 (1991), no. 3, 816–820. Y. Shalom: Bounded generation and Kazhdan's property (<i>T</i>), <i>Inst.</i> <i>Hautes Études Sci. Publ. Math.</i> No. 90, (1999), 145–168 (2001). O.I. Tavgen, Bounded generation of Chevalley groups over rings of algebraic <i>S</i> -integers, <i>Math. USSR-Izv.</i> 36 (1991), no. 1, 101–128.
I.e., $T \rightsquigarrow \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$ $Proof. \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad q = a + kb \text{ prime, } 2 \text{ is prim root}$ $\sim \begin{bmatrix} q & b \\ * & * \end{bmatrix} \qquad 2^{\ell} \equiv b \pmod{q}; \ 2^{\ell} = b + k'q$ $\sim \begin{bmatrix} q & 2^{\ell} \\ * & * \end{bmatrix} \qquad 2^{\ell} \text{ unit } \Rightarrow \text{ can add } anything \text{ to } q$ $\sim \begin{bmatrix} 1 & 2^{\ell} \\ * & * \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \square$ I. V. Erovenko and A. Rapinchuk, Bounded generation of <i>S</i> -arithmetic subgroups of isotropic orthogonal groups over number fields, (preprint). B. Liehl: Beschränkte Wortlänge in SL ₂ . <i>Math. Z.</i> 186 (1984), no. 4, 509-524. L. Lifschitz and D. W. Morris: Isotropic nonarchimedean <i>S</i> -arithmetic groups are not left orderable, <i>C. R. Math. Acad. Sci. Paris</i> 339 (2004), no. 6, 417-420. A. Lubotzky: Subgroup growth and congruence subgroups, <i>Invent</i> .	H. Bass, <i>Algebraic K-theory</i> , Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL _n $(n \ge 3)$ and Sp _{2n} $(n \ge 2)$, <i>Inst. Hautes</i> <i>Études Sci. Publ. Math.</i> 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of SL _n (\mathcal{O}), <i>Amer. J. Math.</i> 105 (1983), 673–687. D. Carter and G. Keller, Elementary expressions for unimodular matrices, <i>Comm. Algebra</i> 12 (1984), 379–389. D. Carter, G. Keller, and E. Paige: Bounded expressions in SL(<i>n</i> , <i>A</i>), (unpublished). I. V. Erovenko and A. Rapinchuk, Bounded generation of some <i>S</i> - arithmetic orthogonal groups, <i>C. R. Acad. Sci. Paris Sér. I Math.</i> 333 (2001), no. 5, 395–398. A. S. Rapinchuk: Representations of groups of finite width, <i>Soviet</i> <i>Math. Dokl.</i> 42 (1991), no. 3, 816–820. Y. Shalom: Bounded generation and Kazhdan's property (<i>T</i>), <i>Inst.</i> <i>Hautes Études Sci. Publ. Math.</i> No. 90, (1999), 145–168 (2001). O.I. Tavgen, Bounded generation of Chevalley groups over rings of
I.e., $T \sim \text{Id}$ by $\mathbb{Z}[1/2]$ col ops, # steps is bdd. Proof. $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $q = a + kb$ prime, 2 is prim root $\sim \begin{bmatrix} q & b \\ * & * \end{bmatrix}$ $2^{\ell} \equiv b \pmod{q}$; $2^{\ell} = b + k'q$ $\sim \begin{bmatrix} q & 2^{\ell} \\ * & * \end{bmatrix}$ 2^{ℓ} unit \Rightarrow can add <i>anything</i> to q $\sim \begin{bmatrix} 1 & 2^{\ell} \\ * & * \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. \Box I. V. Erovenko and A. Rapinchuk, Bounded generation of <i>S</i> - arithmetic subgroups of isotropic orthogonal groups over number fields, (preprint). B. Liehl: Beschränkte Wortlänge in SL ₂ . <i>Math. Z.</i> 186 (1984), no. 4, 509–524. L. Lifschitz and D. W. Morris: Isotropic nonarchimedean <i>S</i> - arithmetic groups are not left orderable, <i>C. R. Math. Acad. Sci.</i> <i>Paris</i> 339 (2004), no. 6, 417-420. A. Lubotzky: Subgroup growth and congruence subgroups, <i>Invent.</i> <i>Math.</i> 119 (1995), no. 2, 267–295. D. W. Morris: Bounded generation in SL(<i>n</i> , <i>A</i>) (after D. Carter,	H. Bass, <i>Algebraic K-theory</i> , Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL _n $(n \ge 3)$ and Sp _{2n} $(n \ge 2)$, <i>Inst. Hautes</i> <i>Études Sci. Publ. Math.</i> 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of SL _n (\mathcal{O}), <i>Amer. J. Math.</i> 105 (1983), 673–687. D. Carter and G. Keller, Elementary expressions for unimodular matrices, <i>Comm. Algebra</i> 12 (1984), 379–389. D. Carter, G. Keller, and E. Paige: Bounded expressions in SL(<i>n</i> , <i>A</i>), (unpublished). I. V. Erovenko and A. Rapinchuk, Bounded generation of some <i>S</i> - arithmetic orthogonal groups, <i>C. R. Acad. Sci. Paris Sér. I Math.</i> 333 (2001), no. 5, 395–398. A. S. Rapinchuk: Representations of groups of finite width, <i>Soviet</i> <i>Math. Dokl.</i> 42 (1991), no. 3, 816–820. Y. Shalom: Bounded generation and Kazhdan's property (<i>T</i>), <i>Inst.</i> <i>Hautes Études Sci. Publ. Math.</i> No. 90, (1999), 145–168 (2001). O.I. Tavgen, Bounded generation of Chevalley groups over rings of algebraic <i>S</i> -integers, <i>Math. USSR-Izv.</i> 36 (1991), no. 1, 101–128. O.I. Tavgen, Finite width of arithmetic subgroups of Chevalley
I.e., $T \rightsquigarrow \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$ $Proof. \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad q = a + kb \text{ prime, 2 is prim root}$ $\sim \begin{bmatrix} q & b \\ * & * \end{bmatrix} \qquad 2^{\ell} \equiv b \pmod{q}; \ 2^{\ell} = b + k'q$ $\sim \begin{bmatrix} q & 2^{\ell} \\ * & * \end{bmatrix} \qquad 2^{\ell} \text{ unit } \Rightarrow \text{ can add } anything \text{ to } q$ $\sim \begin{bmatrix} 1 & 2^{\ell} \\ * & * \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \square$ I. V. Erovenko and A. Rapinchuk, Bounded generation of <i>S</i> -arithmetic subgroups of isotropic orthogonal groups over number fields, (preprint). B. Liehl: Beschränkte Wortlänge in SL ₂ . <i>Math. Z.</i> 186 (1984), no. 4, 509–524. L. Lifschitz and D. W. Morris: Isotropic nonarchimedean <i>S</i> -arithmetic groups are not left orderable, <i>C. R. Math. Acad. Sci. Paris</i> 339 (2004), no. 6, 417-420. A. Lubotzky: Subgroup growth and congruence subgroups, <i>Invent. Math.</i> 119 (1995), no. 2, 267-295.	H. Bass, <i>Algebraic K-theory</i> , Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL _n $(n \ge 3)$ and Sp _{2n} $(n \ge 2)$, <i>Inst. Hautes</i> <i>Études Sci. Publ. Math.</i> 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of SL _n (\mathcal{O}), <i>Amer. J. Math.</i> 105 (1983), 673–687. D. Carter and G. Keller, Elementary expressions for unimodular matrices, <i>Comm. Algebra</i> 12 (1984), 379–389. D. Carter, G. Keller, and E. Paige: Bounded expressions in SL(<i>n</i> , <i>A</i>), (unpublished). I. V. Erovenko and A. Rapinchuk, Bounded generation of some <i>S</i> - arithmetic orthogonal groups, <i>C. R. Acad. Sci. Paris Sér. I Math.</i> 333 (2001), no. 5, 395–398. A. S. Rapinchuk: Representations of groups of finite width, <i>Soviet</i> <i>Math. Dokl.</i> 42 (1991), no. 3, 816–820. Y. Shalom: Bounded generation and Kazhdan's property (<i>T</i>), <i>Inst.</i> <i>Hautes Études Sci. Publ. Math.</i> No. 90, (1999), 145–168 (2001). O.I. Tavgen, Bounded generation of Chevalley groups over rings of algebraic <i>S</i> -integers, <i>Math. USSR-Izv.</i> 36 (1991), no. 1, 101–128. O.I. Tavgen, Finite width of arithmetic subgroups of Chevalley
I.e., $T \rightsquigarrow \text{Id by } \mathbb{Z}[1/2] \text{ col ops, } \# \text{ steps is bdd.}$ $Proof. \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad q = a + kb \text{ prime, } 2 \text{ is prim root}$ $\sim \begin{bmatrix} q & b \\ * & * \end{bmatrix} \qquad 2^{\ell} \equiv b \pmod{q}; \ 2^{\ell} = b + k'q$ $\sim \begin{bmatrix} q & 2^{\ell} \\ * & * \end{bmatrix} \qquad 2^{\ell} \text{ unit } \Rightarrow \text{ can add } anything \text{ to } q$ $\sim \begin{bmatrix} 1 & 2^{\ell} \\ * & * \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \square$ I. V. Erovenko and A. Rapinchuk, Bounded generation of <i>S</i> -arithmetic subgroups of isotropic orthogonal groups over number fields, (preprint). B. Liehl: Beschränkte Wortlänge in SL ₂ . <i>Math. Z.</i> 186 (1984), no. 4, 509-524. L. Lifschitz and D. W. Morris: Isotropic nonarchimedean <i>S</i> -arithmetic groups are not left orderable, <i>C. R. Math. Acad. Sci. Paris</i> 339 (2004), no. 6, 417-420. A. Lubotzky: Subgroup growth and congruence subgroups, <i>Invent. Math.</i> 119 (1995), no. 2, 267-295. D. W. Morris: Bounded generation in SL(<i>n</i> , <i>A</i>) (after D. Carter, G. Keller, and E. Paige) (preprint).	H. Bass, <i>Algebraic K-theory</i> , Benjamin, New York, 1968. H. Bass, J. Milnor, and JP. Serre, Solution of the Congruence Subgroup Problem for SL _n $(n \ge 3)$ and Sp _{2n} $(n \ge 2)$, <i>Inst. Hautes</i> <i>Études Sci. Publ. Math.</i> 33 (1967), 59–137. D. Carter and G. Keller, Bounded elementary generation of SL _n (\mathcal{O}), <i>Amer. J. Math.</i> 105 (1983), 673–687. D. Carter and G. Keller, Elementary expressions for unimodular matrices, <i>Comm. Algebra</i> 12 (1984), 379–389. D. Carter, G. Keller, and E. Paige: Bounded expressions in SL(<i>n</i> , <i>A</i>), (unpublished). I. V. Erovenko and A. Rapinchuk, Bounded generation of some <i>S</i> - arithmetic orthogonal groups, <i>C. R. Acad. Sci. Paris Sér. I Math.</i> 333 (2001), no. 5, 395–398. A. S. Rapinchuk: Representations of groups of finite width, <i>Soviet</i> <i>Math. Dokl.</i> 42 (1991), no. 3, 816–820. Y. Shalom: Bounded generation and Kazhdan's property (<i>T</i>), <i>Inst.</i> <i>Hautes Études Sci. Publ. Math.</i> No. 90, (1999), 145–168 (2001). O.I. Tavgen, Bounded generation of Chevalley groups over rings of algebraic <i>S</i> -integers, <i>Math. USSR-Izv.</i> 36 (1991), no. 1, 101–128. O.I. Tavgen, Finite width of arithmetic subgroups of Chevalley