Introduction to model-theoretic methods for proofs of bounded generation

Dave Witte Morris

University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Abstract. These expository talks will describe three classical methods from the model theory of first-order logic, and describe situations in which they can be used to show that every element of a group is the product of the same number of elements of a given generating set. (For example, the methods sometimes show there is some *C*, such that every element of the commutator subgroup is the product of *C* commutators.) The methods are: the Compactness Theorem, ultraproducts, and nonstandard analysis.

Introduction

Lemma (undergraduate Linear Algebra)

 $n \times n$ matrix *T* is invertible \Leftrightarrow *T* \rightsquigarrow Id by elementary row ops \Leftrightarrow *T* is a product of elementary matrices. (*True over any field.*)

Corollary (from first-order logic)

For fixed *n*, can use same # of row ops for every $n \times n$ matrix. I.e., $\exists C$, every $n \times n$ invertible matrix (over any field) is the product of *C* elementary matrices.

Exer. Look at a proof of the lemma, and find some *C*, such that row reducing the matrix only takes *C* operations.

But the exercise is unnecessary:

Notation

 $n \in \mathbb{N}$, *F* field.

Logic tells us that \overline{C} exists, without having to do extra work.

F infinite \Rightarrow *G* = SL(*n*, *F*) is simple (modulo scalar matrices)

If N is a proper, normal subgroup of G, then $N \subseteq F^{\times} \cdot Id$.

 $SL(n,F) = \{ T \in GL(n,F) \mid \det T = 1 \}$

Notation

Let *S* be a subset of a group *G*.

- $\langle S \rangle$ = subgroup generated by *S*
- $= \{s_1 s_2 \cdots s_k \mid s_i \in S^{\pm 1}, \ k \in \mathbb{N}\}$
- $\langle S \rangle_r = \{ s_1 s_2 \cdots s_k \mid s_i \in S^{\pm 1}, \ k \leq r \}$

Definition

- *S* generates *G* if $\langle S \rangle = G$
- *S* boundedly generates *G* if $\langle S \rangle_r = G$ for some $r \in \mathbb{N}$

Example

Group GL(n, F) of invertible $n \times n$ matrices is boundedly generated by the set of elementary matrices (for all $n \in \mathbb{N}$ and every field F). I.e., if $T \in SL(n, F)$, and $T \notin F^{\times} \cdot Id$, then

Theorem (graduate Group Theory)

 $\langle \text{conjugates } P^{-1}TP \text{ of } T \rangle = \text{SL}(n, F).$

Corollary (first-order logic)

Conjugates of T *boundedly generate* SL(n, F)*.*

Exer. Examine pf of the thm and find bound *C* on # conjugates. Will be a lot of work!

Logic tells us that *C* exists, without having to do extra work.

First-order logic: bound exists (without additional work) If certain types of conditions imply that a function $f: A \to \mathbb{N}$ exists on all of A, (# row operations needed, # conjugates needed, ...) Then f must be a bounded function: $f(a) \le C$ for all $a \in A$. (We do not need to know how to prove the theorem.)

We will see how to prove bounded generation using:

- Compactness Theorem
- Ultraproducts
- Nonstandard analysis

First-order logic

The only quantifiers are $\forall x \text{ and } \exists x \text{ (or also } \forall x \in y \text{ and } \exists x \in y).$

You cannot write " $\forall x \subseteq A$ " in a first-order sentence.

Quantifiers range over the *elements* of the univ of discourse U, so $\forall x$ or $\exists x$ cannot assign a subset of U to the variable x unless that subset happens to be an element of U.

Second-order logics (and other higher-order logics) allow you to write sentences about *all* subsets of the universe of discourse.

Definition

- A (first-order) *language* is a (finite or infinite) set \mathcal{L} of:
 - constant symbols c_1, c_2, \ldots ,
 - function symbols $f_1, f_2, \ldots, (k_i$ -ary),
 - relation symbols $R_1, R_2, \ldots (k_i$ -ary).
- Also have;
- = and \in ,
- logical connectives: &, \lor (or), \Rightarrow , \Leftrightarrow and \neg (not)
- variables $(x_1, x_2, ...)$,
- (bounded) quantifiers: $\forall x, \exists x, \forall x \in y, \exists x \in y$.

Example

- group theory: constant symbol 1 and binary operator *
- field theory: constants 0 and 1 and binary ops + and \times These suffice to write all of the axioms
 - of group theory (e.g., $\forall x, \exists y, xy = 1$)
 - or field theory (e.g., $\forall x, y, z, x \cdot (y + z) = x \cdot y + x \cdot z)$.

Exercise

Write first-order sentence ψ_r *that says* $n \times n$ *matrix* $[c_{i,j}]$ *is in:*

- $\langle elementary matrices \rangle_r$
- $(conjugates of [a_{ij}])_r$

Compactness Theorem of first-order logic

Assume Φ and Ψ are sets of first-order axioms, such that for all structures that satisfy all of the axioms in Φ , at least one of the assertions in Ψ is also true. Then Ψ can be replaced with a finite subset Ψ_0 .

Exercise

Finiteness cannot be expressed by first-order axioms: If first-order axioms imply that a set is finite, then $\exists C$, such that the axioms imply the cardinality of the set is $\leq C$.

If a set of first-order axioms is satisfied by arbitrarily large finite structures, then it is satisfied by an infinite structure.

Example

GL(n, F) is boundedly generated by the set of elementary matrices (for all $n \in \mathbb{N}$ and every field *F*).

Proof.

- $\Phi = \{ \text{field axioms} \} \cup \{ [c_{ij}] \text{ is } n \times n \text{ invertible matrix} \}.$
- ψ_r : $[c_{ij}] \in \langle \text{elem mats} \rangle_r$.

Linear Algebra: some ψ_r is true.

Compactness Theorem: $\exists C$, some $\psi_{\leq C}$ is true.

(And *C* does not depend on *F*, but does depend on *n*.) \Box

Ultraproducts

Remark

Elementary matrices boundedly generate GL(n, F) \Leftrightarrow elementary matrices generate $GL(n, X_{i=1}^{\infty}F)$

Proof.

$$\operatorname{GL}(n, X_{i=1}^{\infty} F) \cong X_{i=1}^{\infty} \operatorname{GL}(n, F).$$

 $T_k \neq \text{product of } k \text{ elem mats in } \operatorname{GL}(n, F),$ $\Rightarrow (T_k)_{k=1}^{\infty} \neq \text{prod of any } \# \text{ of elem mats in } \times_{i=1}^{\infty} \operatorname{GL}(n, F).$

Bounded generation \rightsquigarrow ordinary generation — but over a terrible ring (with lots of zero divisors). Ultraproducts make the same reduction, but over a field.

Definition

A *nonprincipal ultrafilter* (\mathcal{U} or μ) on \mathbb{N} is a finitely additive, {0, 1}-valued measure on *I* that has no atoms.

- Every set has measure 0 or 1,
- finite sets have measure 0, and
- the whole space (\mathbb{N}) has measure 1.

Axiom of Choice (Zorn's Lemma) implies:

Proposition

There is a nonprincipal ultrafilter U on \mathbb{N} (or any infinite set).

Definition

Let A_1, A_2, \ldots be a sequence of sets.

Equivalence relation on
$$\prod_{i=1}^{\infty} A_i$$
:

$$(a_i)_{i=1}^{\infty} \sim (b_i)_{i=1}^{\infty} \iff a_i = b_i$$
 a.e.

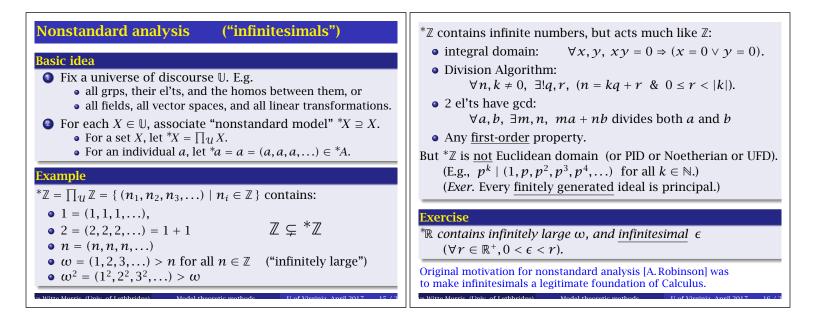
E.g., $a_i = b_i$ for all large *i* (finite sets have measure 0)

• Ultraproduct: $\prod_{\mathcal{U}} A_i = (\prod_{i=1}^{\infty} A_i) / \sim$.

Theorem

Suppose $\varphi(x, y)$ is a first-order formula and $a, b \in \prod_{\mathcal{U}} A_i$. (So $a = (a_i)_{i=1}^{\infty}$ and $b = (b_i)_{i=1}^{\infty}$.) Then $\varphi(a, b)$ is true in $\prod_{\mathcal{U}} A_i$ $\iff \varphi(a_i, b_i)$ is true for a.e. *i*.

Example • $\varphi(x, y) : x = y$ (definition of ultraproduct) • General φ : proved by ind'n with $x = y$ as the base case. • $\prod_{\mathcal{U}} G_i$ is abelian \Leftrightarrow a.e. G_i is abelian. • $\prod_{\mathcal{U}} F_i$ is a field \Leftrightarrow a.e. F_i is a field.	Exer. Elem mats generate $GL(n, \prod_{\mathcal{U}} F)$ (because $\prod_{\mathcal{U}} F$ is a <u>field</u>) \Rightarrow elementary matrices <u>boundedly</u> generate $GL(n, F)$. I.e., $\exists r$, $GL(n, F) = \langle \text{elem mats} \rangle_r$ (product of $\leq i$ el'ts) Proof.
Example	Suppose not. Then $\exists T_i \notin \langle \text{elementary matrices} \rangle_i$.
$\prod_{\mathcal{U}} \mathbb{Z} \text{ is an integral domain: } \forall x, y, xy = 0 \Rightarrow (x = 0 \lor y = 0).$ Proof.	Then $(T_i)_{i=1}^{\infty} \in \prod_{\mathcal{U}} \operatorname{GL}(n, F) \cong \operatorname{GL}(n, \prod_{\mathcal{U}} F)$.
$xy = 0 \Rightarrow x_iy_i = 0 \text{ a.e.}$	But $(T_i)_{i \in \mathbb{N}} \notin \langle \text{elementary matrices} \rangle$
Let $X = \{i \mid x_i = 0\}$ and $Y = \{j \mid y_j = 0\}.$	$(T_i)_{i \in \mathbb{N}} = A_1 A_2 \cdots A_r$
Then $\mu(X) + \mu(Y) \ge \mu(X \cup Y) = \mu(\{i \mid x_iy_i = 0\}) = 1 > 0 + 0.$	$\Rightarrow T_i = (A_1)_i (A_2)_i \cdots (A_r)_i \in \langle \text{elem mats} \rangle_r$.
So $\mu(X)$ and $\mu(Y)$ cannot both be 0 — one must be 1.	and $\prod_{\mathcal{U}} F$ is a field (since the field axioms are first-order).
Either the 0 a a much we does	This is a contradiction.
Either $x_i = 0$ a.e. or $y_i = 0$ a.e.	Therefore, anything that can be proved with the Compactness
I.e., either $x = 0$ or $y = 0$.	Theorem can also be proved with ultraproducts.



Theorem (Transfer principle)

A first-order assertion φ is true in X \Leftrightarrow its *-transform is true in *X. ("Transfer principle") (Replace each constant symbol c in φ with *c.)

Example

Suppose $A, B \subseteq \mathbb{Z}$, such that $\forall a \in A, \exists b \in B, a^2 = b^3$. Transfer principle: $\forall a \in {}^*A, \exists b \in {}^*B, a^2 = b^3$.

Example

Suppose *F* is a field. Then **F* is a field (because field axioms are first order). Therefore SL(n, *F) is generated by elementary matrices. \therefore SL(n, F) is boundedly generated by elementary matrices.

Proof.

Recall: $\langle \text{elem mats} \rangle_r = \{ \text{prod of } \leq r \text{ elem mats} \}.$ So SL $(n, *F) = \bigcup_{r \in \mathbb{N}} \langle \text{elem mats} \rangle_r \subseteq \langle \text{elem mats} \rangle_{\omega}.$ Obvious: $r < s \Rightarrow \langle \text{elem mats} \rangle_r \subseteq \langle \text{elem mats} \rangle_s.$ \therefore SL(n, *F) satisfies $\exists r \in *\mathbb{N}, \forall x, x \in \langle \text{elem mats} \rangle_r.$ Transfer principle: SL(n, F) satisfies $\exists r \in \mathbb{N}, \forall x, x \in \langle \text{elem mats} \rangle_r.$

Exercise

Suppose S is a subset of a group G. Show the following are equivalent:

- *S* boundedly generates $\langle S \rangle$.
- $(*S) = *\langle S \rangle.$
- **3** $|^{*}\langle S \rangle : \langle *S \rangle|$ *is finite (or *-finite).*

Example (D. Carter, G. Keller, and E. Paige) Nonstandard analysis provides a simple proof that elementary matrices boundedly generate $SL(3, \mathbb{Z})$.	 Proof. Theorem (from 1960s). Suppose <i>R</i> is commutative ring with stable range condition SR₂, and <i>N</i> is a normal subgroup of SL(3, <i>R</i>) (not in center).
Idea of proof.	Then \exists ideal 1 of R, such that N contains
There are (specific) first-order axioms Φ satisfied by \mathbb{Z} , such that if R is a ring satisfying these axioms, then elementary matrices generate SL(3, R).	$E(\mathcal{I}) := \{elem \text{ mats that are} \equiv \mathrm{Id} \pmod{\mathcal{I}}\}$ = $\{elem \text{ mats}\} \cap \mathrm{SL}(3, \mathbb{Z}; \mathcal{I}).$ $S = \{\mathrm{conjs of } T\}. N = \langle {}^*S \rangle = \langle \mathrm{conjs of } T \text{ in } \mathrm{SL}(3, {}^*\mathbb{Z}) \rangle.$ Theorem gives us an ideal $\mathcal{I}.$ (We may assume \mathcal{I} is principal.) Generalization of CKP Example: $\mathrm{SL}(3, {}^*\mathbb{Z}; \mathcal{I})/\langle E(\mathcal{I}) \rangle$ is finite. Easy: for all $q \in \mathbb{Z}$, $\mathrm{SL}(3, \mathbb{Z})/\mathrm{SL}(3, \mathbb{Z}; q\mathbb{Z})$ is finite. Transfer Principle: $\mathrm{SL}(3, {}^*\mathbb{Z})/\mathrm{SL}(3, {}^*\mathbb{Z}; \mathcal{I})$ is *-finite. Therefore $\mathrm{SL}(3, {}^*\mathbb{Z})/\langle E(\mathcal{I}) \rangle$ is *-finite. So $ {}^*\langle S \rangle/\langle {}^*S \rangle \leq \mathrm{SL}(3, {}^*\mathbb{Z})/\langle E(\mathcal{I}) \rangle $ is *-finite. \therefore Exercise tells us that S boundedly generates.
Let <i>T</i> be a noncentral matrix in SL(3, ℤ). Then the conjugates of <i>T</i> boundedly generate a finite-index, normal subgroup.	

Remark

Nonstandard analysis puts every set in our universe inside a "finite" set:

Every $A \in \mathbb{U}$ is contained in a *-finite $B \in {}^*\mathbb{U}$: $\exists n \in {}^*\mathbb{N}, \ \exists f \in {}^*\mathbb{U}, \ f : \{0, 1, \dots, n\} \longrightarrow B.$

For this theorem, need to take ultraproduct with large index set, instead of \mathbb{N} .

Further reading

First-order logic and the Compactness Theorem

See almost any textbook on mathematical logic, or:

J. Barwise,

An introduction to first-order logic, pp. 5-46 in *Handbook of Mathematical Logic*. North-Holland Publishing Co., New York, 1977. ISBN: 0-7204-2285-X, MR0457132

Ultraproducts

See almost any textbook on model theory, or:

P.C.Eklof,

Ultraproducts for algebraists, pp. 105–137 in *Handbook of Mathematical Logic*. North-Holland Publishing Co., New York, 1977. ISBN: 0-7204-2285-X, MR0457132

Nonstandard analysis

Several textbooks are available, such as:

M. Davis: *Applied Nonstandard Analysis.* Wiley-Interscience, New York, 1977. ISBN: 0-471-19897-8, MR0505473

P. A. Loeb and M. Wolff, eds.: Nonstandard Analysis for the Working Mathematician. Kluwer, Dordrecht, 2000. ISBN: 0-7923-6340-X, MR1790871

Application to bounded generation of matrix groups

D. Carter, G. Keller, and E. Paige: Bounded expressions in SL(n, A), unpublished (c. 1985).

D.W.Morris: Bounded generation of SL(*n*, *A*) (after D. Carter, G. Keller, and E. Paige). *New York J. Math.* 13 (2007), 383-421. MR2357719 http://nyjm.albany.edu/j/2007/13_383.html