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Abstract. These expository talks will describe three classical methods
from the model theory of first-order logic, and describe situations in
which they can be used to show that every element of a group is the
product of the same number of elements of a given generating set. (For
example, the methods sometimes show there is some C, such that every
element of the commutator subgroup is the product of C commutators.)
The methods are: the Compactness Theorem, ultraproducts, and
nonstandard analysis.

Introduction

Lemma (undergraduate Linear Algebra)

n X n matrix T is invertible & T ~ Id by elementary row ops
< T is a product of elementary matrices.
(True over any field.)

Corollary (from first-order logic)

For fixed n, can use same # of row ops for every n X n matrix.
Le., AC, every n x n invertible matrix (over any field) is the
product of C elementary matrices.

Exer. Look at a proof of the lemma, and find some C, such
that row reducing the matrix only takes C operations.

But the exercise is unnecessary:
Logic tells us that C exists, without having to do extra work.

Let S be a subset of a group G.

@ (S) = subgroup generated by S
= {s150---Sk | s; € S*L, ke N}
@ (S)y={s152---sx|sieS* k<r}

@ S generates G if (S) =G
@ S boundedly generates G if (S),, = G for some r € N

I

xample
Group GL(n, F) of invertible n x n matrices is boundedly
generated by the set of elementary matrices
(for all n € N and every field F).

Notation

n € N, F field. SL(n,F) ={T € GL(n,F) |detT =1}

Theorem (graduate Group Theory)

F infinite = G = SL(n, F) is simple (modulo scalar matrices)
If N is a proper, normal subgroup of G, then N < F* - Id.

le., if T € SL(n,F),and T ¢ F* - 1d, then
(conjugates P~'TP of T) = SL(n, F).

Corollary (first-order logic)
Conjugates of T boundedly generate SL(n, F).

Exer. Examine pf of the thm and find bound C on # conjugates.
Will be a lot of work!

Logic tells us that C exists, without having to do extra work.

First-order logic: bound exists (without additional work)
If certain types of conditions imply that

a function f: A — N exists on all of A,
(# row operations needed, # conjugates needed, ...)
Then f must be a bounded function: f(a) < C for all a € A.

(We do not need to know how to prove the theorem.)

We will see how to prove bounded generation using:
@ Compactness Theorem
@ Ultraproducts
@ Nonstandard analysis

First-order logic

The only quantifiers are Vx and 3x (or also Vx € y and 3x € ).

You cannot write “Vx c A” in a first-order sentence.

Quantifiers range over the elements of the univ of discourse U,
so Vx or dx cannot assign a subset of U to the variable x unless that
subset happens to be an element of U.

Second-order logics (and other higher-order logics) allow you to write
sentences about all subsets of the universe of discourse.




A (first-order) language is a (finite or infinite) set £ of:
@ constant symbols cy, ca, ...,

o function symbols fi, f>,... (k;-ary),

@ relation symbols Ry, R», ... (k;-ary).
Also have:

@ =and €,

@ logical connectives: &, Vv (or), =, < and — (not)
@ variables (x1, x2,...),
@ (bounded) quantifiers: Vx, Ix, Vx € y, Ix € y.

@ group theory: constant symbol 1 and binary operator *

@ field theory: constants 0 and 1 and binary ops + and x
These suffice to write all of the axioms
@ of group theory (e.g., Vx,3y, xy =1)
@ or field theory (e.g., Vx,y,z, x-(y+2z)=x-y+Xx-2).

Exercise

Write first-order sentence , that says n x n matrix [c; ;] is in:
@ (elementary matrices),

O (conjugates of [ai;]),

Compactness Theorem of first-order logic

Assume ® and ¥ are sets of first-order axioms, such that
for all structures that satisfy all of the axioms in &,
at least one of the assertions in V¥ is also true.

Then ¥ can be replaced with a finite subset ¥j.

Exercise

Finiteness cannot be expressed by first-order axioms:
If first-order axioms imply that a set is finite, then 3C,
such that the axioms imply the cardinality of the set is < C.

If a set of first-order axioms is satisfied by arbitrarily large
finite structures, then it is satisfied by an infinite structure.

GL(n, F) is boundedly generated by the set of elementary
matrices (for all n € N and every field F).

Proof.
o & = {field axioms} U {[c;;] is n X n invertible matrix}.
® Y,: [cij] € (elem mats),.

Linear Algebra: some y, is true.

Compactness Theorem: 3C, some /¢ is true.
(And C does not depend on F, but does depend on n.) [l

Ultraproducts

Remark

Elementary matrices boundedly generate GL(n, F)
< elementary matrices generate GL(n, X2, F)

roof.

|

GL(n, XL, F) = X2, GL(n,F).

Ty + product of k elem mats in GL(n, F),
= (Tx)p., # prod of any # of elem mats in X;; GL(n,F). [

Bounded generation ~ ordinary generation
— but over a terrible ring (with lots of zero divisors).
Ultraproducts make the same reduction, but over a field.

A nonprincipal ultrafilter (‘U or u) on N is a finitely additive,
{0, 1}-valued measure on I that has no atoms.

@ Every set has measure O or 1,
o finite sets have measure 0, and
@ the whole space (N) has measure 1.

Axiom of Choice (Zorn’s Lemma) implies:

There is a nonprincipal ultrafilter ‘U on N (or any infinite set).

Let Ay, Ay, ... be a sequence of sets.
@ Equivalence relation on [[;-; A;:
(ai)gil ~ (bl):ozl < a; = bj ae.
E.g., a; = b; for all large i (finite sets have measure 0)
@ Ultraproduct: [Ty A; = ([Tieq Ai)/~.

Suppose @ (x,y) is a first-order formula and a,b € [y A;.
(So a =(ai)2, and b = (by);,.)
Then @(a,b) istrue in [y A;
<  @l(ayb;) is true for a.e. i.




Example

e p(x,y): x=y (definition of ultraproduct)

@ General @: proved by ind’n with x = 7y as the base case.
@ [[yG;is abelian < a.e. G; is abelian.

@ [[yFiisafield < a.e.F;is a field.

l

xample
[14 7 is an integral domain: Vx,y, xy =0= (x =0V y =0).

roof.

|

xy =0 = x;v;=0a.e.

LetX={i|x;=0}and Y ={j | y; =0}.

Then p(X) + p(Y) =2 u(XUY) =pu({ilx;y;=0}) =1>0+0.
So p(X) and pu(Y) cannot both be 0 — one must be 1.

Either x; = 0 a.e. or y; =0 a.e.

Le., either x = 0 or y = 0. O

Exer. Elem mats generate GL(n, [[y F) (because [Iy F is a field)
= elementary matrices boundedly generate GL(n, F).

Le., 37, GL(n,F) = (elem mats),, (product of < i el’ts)

Suppose not. Then 3T; ¢ (elementary matrices);.
Then (T;)$2, € [[4GL(n, F) = GL(n, [[y F).
But (T;)ien ¢ (elementary matrices)
(T)ien = A1A2 - - - Ay
= T;=(A1)i(A2);- - (Ay); € (elem mats),.
and []y F is a field (since the field axioms are first-order).
This is a contradiction. ]

Exer. Use ultraproducts to prove the Compactness Theorem.

Therefore, anything that can be proved with the Compactness
Theorem can also be proved with ultraproducts.

Nonstandard analysis (“infinitesimals”)

Basic idea
@ Fix a universe of discourse U. E.g.
o all grps, their el’ts, and the homos between them, or
o all fields, all vector spaces, and all linear transformations.
@ For each X € U, associate “nonstandard model” *X 2 X.
e For a set X, let *X = [y X.
e For an individual a, let *a = a = (a,a,a,...) € *A.

Example

*2 =T1uZ = {(ny,ny,ns,...) | n; € Z} contains:
el1=(1,1,1,...),
e2=(2,2,2,...)0=1+1
en=mnnn,...
e w=(1,2,3,...)>nforallnez
o w?=(1%,22,32,..)>w

7 < *7

(“infinitely large”)

*Z contains infinite numbers, but acts much like Z:
@ integral domain: Vx,yv, xy=0=>(x=0Vvy=0).
@ Division Algorithm:
Vn,k+0, 3q,r, m=kq+r & 0<r < |k|).
@ 2 el'ts have gcd:
Ya,b, 3m,n, ma + nb divides both a and b
@ Any first-order property.
But *Z is not Fuclidean domain (or PID or Noetherian or UFD).
(E.g., p*| (1,p,p% p3, p*...) forallk € N.)
(Exer. Every finitely generated ideal is principal.)

Exercise

*R contains infinitely large w, and infinitesimal €
(Vr eRT,0< € <7).

Original motivation for nonstandard analysis [A.Robinson] was
to make infinitesimals a legitimate foundation of Calculus.

Theorem (Transfer principle)
A first-order assertion @ is true in X
< its x-transform is true in *X.
(Replace each constant symbol c in @ with *c.)

(“Transfer principle”)

Example

Suppose A, B < Z, such that Va € A, 3b € B, a® = b3.
Transfer principle: Va € *A, 3b € *B, a? = b3.

Example

Suppose F is a field.

Then *F is a field (because field axioms are first order).
Therefore SL(n, *F) is generated by elementary matrices.

.. SL(nm, F) is boundedly generated by elementary matrices.

Recall: (elem mats), = {prod of < r elem mats}.
So SL(n,*F) = J,en(elem mats), < (elem mats) .
Obvious: 7 < s = (elem mats), < (elem mats);.
~. SL(n,*F) satisfies 3r € N, Vx, x € (elem mats),.
Transfer principle:
SL(n, F) satisfies 37 € N, Vx, x € (elem mats),. O

Exercise

Suppose S is a subset of a group G.
Show the following are equivalent:

@ S boundedly generates (S).
Q (") =XS).
Q (S : (*S)] is finite (or *-finite).




Example (D. Carter, G.Keller, and E.Paige)

Nonstandard analysis provides a simple proof that
elementary matrices boundedly generate SL(3,Z).

Idea of proof.

There are (specific) first-order axioms & satisfied by Z,

such that if R is a ring satisfying these axioms,

then elementary matrices generate SL(3,R). ]

The methods have also yielded new results:

Corollary (D. Carter, G.Keller, and E. Paige)

Let T be a noncentral matrix in SL(3,7Z).
Then the conjugates of T boundedly generate
a finite-index, normal subgroup.

Theorem (from 1960s). Suppose
@ R is commutative ring with stable range condition SR, and
@ N is a normal subgroup of SL(3,R) (not in center).
Then 3 ideal 1 of R, such that N contains
E(7) := {elem mats that are = Id (mod 7)}
= {elem mats} N SL(3,7Z; 7).

S = {conjs of T}. N = (*S) = (conjs of T in SL(3, *Z)).

Theorem gives us an ideal 7. (We may assume 7 is principal.)

Generalization of CKP Example: SL(3,*Z; 7)/(E(7)) is finite.
Easy: for all g € 7, SL(3,Z)/SL(3,Z; qZ) is finite.

Transfer Principle: SL(3,*Z)/SL(3,*Z; 1) is *-finite.
Therefore SL(3,*Z)/(E(7)) is *-finite.
So | X(S)/{(*S)| < |SL(3,*Z)/{E(2)) | is *-finite.
.. Exercise tells us that S boundedly generates. ]

Nonstandard analysis puts every set in our universe inside a
“finite” set:

Every A € U is contained in a *-finite B € *U:
dne™N, 3f e, f:{0,1,...,n} - B.

For this theorem, need to take ultraproduct
with large index set, instead of N.

Further reading
First-order logic and the Compactness Theorem

See almost any textbook on mathematical logic, or:

J. Barwise,

An introduction to first-order logic, pp. 5-46
in Handbook of Mathematical Logic.
North-Holland Publishing Co., New York, 1977.
ISBN: 0-7204-2285-X, MR0457132

Ultraproducts
See almost any textbook on model theory, or:

P. C. Eklof,

Ultraproducts for algebraists, pp. 105-137

in Handbook of Mathematical Logic.
North-Holland Publishing Co., New York, 1977.
ISBN: 0-7204-2285-X, MR0457132

Nonstandard analysis

Several textbooks are available, such as:

M. Davis:

Applied Nonstandard Analysis.
Wiley-Interscience, New York, 1977.
ISBN: 0-471-19897-8, MR0505473

P.A.Loeb and M. Wolff, eds.:

Nonstandard Analysis for the Working Mathematician.
Kluwer, Dordrecht, 2000.

ISBN: 0-7923-6340-X, MR1790871

Application to bounded generation of matrix groups

D. Carter, G.Keller, and E. Paige:
Bounded expressions in SL(7n, A),
unpublished (c. 1985).

D. W. Morris:
Bounded generation of SL(n,A)
(after D. Carter, G.Keller, and E. Paige).
New York J. Math. 13 (2007), 383-421. MR2357719
http://nyjm.albany.edu/j/2007/13_383.html




