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Abstract. These expository talks will describe three classical methods
from the model theory of first-order logic, and describe situations in
which they can be used to show that every element of a group is the
product of the same number of elements of a given generating set. (For
example, the methods sometimes show there is some C , such that every
element of the commutator subgroup is the product of C commutators.)
The methods are: the Compactness Theorem, ultraproducts, and
nonstandard analysis.
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Introduction

Lemma (undergraduate Linear Algebra)

n×n matrix T is invertible ! T " Id by elementary row ops
! T is a product of elementary matrices.

(True over any field.)

Corollary (from first-order logic)

For fixed n, can use same # of row ops for every n×n matrix.
I.e., ∃C , every n×n invertible matrix (over any field) is the
product of C elementary matrices.

Exer. Look at a proof of the lemma, and find some C , such
that row reducing the matrix only takes C operations.

But the exercise is unnecessary:
Logic tells us that C exists, without having to do extra work.
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Notation
Let S be a subset of a group G.

⟨S⟩ = subgroup generated by S
= {s1s2 · · · sk | si ∈ S±1, k ∈ N}

⟨S⟩r = {s1s2 · · · sk | si ∈ S±1, k ≤ r}

Definition
S generates G if ⟨S⟩ = G
S boundedly generates G if ⟨S⟩r = G for some r ∈ N

Example

Group GL(n, F) of invertible n×n matrices is boundedly
generated by the set of elementary matrices

(for all n ∈ N and every field F ).
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Notation
n ∈ N, F field. SL(n, F) = {T ∈ GL(n, F) | detT = 1 }

Theorem (graduate Group Theory)

F infinite ⇒ G = SL(n, F) is simple (modulo scalar matrices)
If N is a proper, normal subgroup of G, then N ⊆ F× · Id.

I.e., if T ∈ SL(n, F), and T ∉ F× · Id, then
⟨conjugates P−1TP of T⟩ = SL(n, F).

Corollary (first-order logic)

Conjugates of T boundedly generate SL(n, F).

Exer. Examine pf of the thm and find bound C on # conjugates.
Will be a lot of work!

Logic tells us that C exists, without having to do extra work.
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First-order logic: bound exists (without additional work)
If certain types of conditions imply that
a function f : A→ N exists on all of A,

(# row operations needed, # conjugates needed, . . . )
Then f must be a bounded function: f(a) ≤ C for all a ∈ A.

(We do not need to know how to prove the theorem.)

We will see how to prove bounded generation using:

Compactness Theorem

Ultraproducts

Nonstandard analysis
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First-order logic

The only quantifiers are ∀x and ∃x (or also ∀x ∈ y and ∃x ∈ y).

You cannot write “∀x ⊆ A” in a first-order sentence.

Quantifiers range over the elements of the univ of discourse U,
so ∀x or ∃x cannot assign a subset of U to the variable x unless that
subset happens to be an element of U.

Second-order logics (and other higher-order logics) allow you to write
sentences about all subsets of the universe of discourse.
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Definition
A (first-order) language is a (finite or infinite) set L of:

constant symbols c1, c2, . . .,
function symbols f1, f2, . . . (ki-ary),
relation symbols R1, R2, . . . (ki-ary).

Also have:
= and ∈,
logical connectives: &, ∨ (or), ⇒, ! and ¬ (not)
variables (x1, x2, . . .),
(bounded) quantifiers: ∀x, ∃x, ∀x ∈ y , ∃x ∈ y .

Example
group theory: constant symbol 1 and binary operator ∗
field theory: constants 0 and 1 and binary ops + and ×

These suffice to write all of the axioms
of group theory (e.g., ∀x,∃y, xy = 1)

or field theory (e.g., ∀x,y, z, x · (y + z) = x ·y + x · z).
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Exercise
Write first-order sentence ψr that says n×n matrix [ci,j] is in:

1 ⟨elementary matrices⟩r
2
〈
conjugates of [aij]

〉
r

Compactness Theorem of first-order logic
Assume Φ and Ψ are sets of first-order axioms, such that

for all structures that satisfy all of the axioms in Φ,
at least one of the assertions in Ψ is also true.

Then Ψ can be replaced with a finite subset Ψ0.

Exercise
Finiteness cannot be expressed by first-order axioms:

If first-order axioms imply that a set is finite, then ∃C ,
such that the axioms imply the cardinality of the set is ≤ C .

If a set of first-order axioms is satisfied by arbitrarily large
finite structures, then it is satisfied by an infinite structure.
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Example

GL(n, F) is boundedly generated by the set of elementary
matrices (for all n ∈ N and every field F ).

Proof.
Φ = {field axioms}∪ {[cij] is n×n invertible matrix}.
ψr : [cij] ∈ ⟨elem mats⟩r .

Linear Algebra: some ψr is true.

Compactness Theorem: ∃C , some ψ≤C is true.
(And C does not depend on F , but does depend on n.)
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Ultraproducts

Remark
Elementary matrices boundedly generate GL(n, F)

! elementary matrices generate GL
(
n,×∞

i=1 F
)

Proof.

GL
(
n,×∞

i=1 F
)
1×∞

i=1 GL(n, F).

Tk ≠ product of k elem mats in GL(n, F),
⇒ (Tk)∞k=1 ≠ prod of any # of elem mats in×∞

i=1 GL(n, F).

Bounded generation " ordinary generation
— but over a terrible ring (with lots of zero divisors).

Ultraproducts make the same reduction, but over a field.
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Definition
A nonprincipal ultrafilter (U or µ) on N is a finitely additive,
{0,1}-valued measure on I that has no atoms.

Every set has measure 0 or 1,

finite sets have measure 0, and

the whole space (N) has measure 1.

Axiom of Choice (Zorn’s Lemma) implies:

Proposition

There is a nonprincipal ultrafilter U on N (or any infinite set).
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Definition
Let A1, A2, . . . be a sequence of sets.

Equivalence relation on
∏∞
i=1Ai:

(ai)∞i=1 ∼ (bi)∞i=1 ⇐⇒ ai = bi a.e.
E.g., ai = bi for all large i (finite sets have measure 0)

Ultraproduct:
∏
UAi = (

∏∞
i=1Ai)/∼.

Theorem
Suppose ϕ(x,y) is a first-order formula and a,b ∈

∏
UAi.

(So a = (ai)∞i=1 and b = (bi)∞i=1.)
Then ϕ(a, b) is true in

∏
UAi

⇐⇒ ϕ(ai, bi) is true for a.e. i.
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Example
ϕ(x,y) : x = y (definition of ultraproduct)
General ϕ: proved by ind’n with x = y as the base case.∏
UGi is abelian ! a.e. Gi is abelian.∏
U Fi is a field ! a.e. Fi is a field.

Example
∏
U Z is an integral domain: ∀x,y, xy = 0 ⇒ (x = 0∨y = 0).

Proof.
xy = 0 ⇒ xiyi = 0 a.e.
Let X = { i | xi = 0} and Y = {j | yj = 0 }.
Then µ(X)+ µ(Y) ≥ µ(X ∪ Y) = µ

(
{i | xiyi = 0}

)
= 1 > 0+ 0.

So µ(X) and µ(Y) cannot both be 0 — one must be 1.
Either xi = 0 a.e. or yi = 0 a.e.
I.e., either x = 0 or y = 0.
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Exer. Elem mats generate GL
(
n,
∏
U F
)

(because
∏
U F is a field)

⇒ elementary matrices boundedly generate GL(n, F).

I.e., ∃r , GL(n, F) = ⟨elem mats⟩r (product of ≤ i el’ts)

Proof.
Suppose not. Then ∃Ti ∉ ⟨elementary matrices⟩i.
Then (Ti)∞i=1 ∈

∏
UGL(n, F) 1 GL

(
n,
∏
U F
)
.

But (Ti)i∈N ∉ ⟨elementary matrices⟩
(Ti)i∈N = A1A2 · · ·Ar
⇒ Ti = (A1)i (A2)i · · · (Ar)i ∈ ⟨elem mats⟩r .

and
∏
U F is a field (since the field axioms are first-order).

This is a contradiction.

Exer. Use ultraproducts to prove the Compactness Theorem.

Therefore, anything that can be proved with the Compactness
Theorem can also be proved with ultraproducts.
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Nonstandard analysis (“infinitesimals”)

Basic idea
1 Fix a universe of discourse U. E.g.

all grps, their el’ts, and the homos between them, or
all fields, all vector spaces, and all linear transformations.

2 For each X ∈ U, associate “nonstandard model” ∗X ⊇ X.
For a set X, let ∗X =

∏
UX.

For an individual a, let ∗a = a = (a,a,a, . . .) ∈ ∗A.

Example
∗Z =

∏
U Z = { (n1, n2, n3, . . .) | ni ∈ Z } contains:

1 = (1,1,1, . . .),
2 = (2,2,2, . . .) = 1+ 1 Z ⊊ ∗Z
n = (n,n,n, . . .)
ω = (1,2,3, . . .) > n for all n ∈ Z (“infinitely large”)
ω2 = (12,22,32, . . .) >ω
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∗Z contains infinite numbers, but acts much like Z:

integral domain: ∀x,y, xy = 0 ⇒ (x = 0∨y = 0).
Division Algorithm:

∀n,k ≠ 0, ∃!q, r , (n = kq + r & 0 ≤ r < |k|).
2 el’ts have gcd:

∀a,b, ∃m,n, ma+nb divides both a and b
Any first-order property.

But ∗Z is not Euclidean domain (or PID or Noetherian or UFD).
(E.g., pk | (1, p, p2, p3, p4, . . .) for all k ∈ N.)
(Exer. Every finitely generated ideal is principal.)

Exercise
∗R contains infinitely large ω, and infinitesimal ϵ

(∀r ∈ R+,0 < ϵ < r ).

Original motivation for nonstandard analysis [A. Robinson] was
to make infinitesimals a legitimate foundation of Calculus.

Dave Witte Morris (Univ. of Lethbridge) Model-theoretic methods U of Virginia, April 2017 16 / 24

Theorem (Transfer principle)

A first-order assertion ϕ is true in X
! its ∗-transform is true in ∗X.

(“Transfer principle”)

(Replace each constant symbol c in ϕ with ∗c.)

Example

Suppose A,B ⊆ Z, such that ∀a ∈ A, ∃b ∈ B, a2 = b3.
Transfer principle: ∀a ∈ ∗A, ∃b ∈ ∗B, a2 = b3.

Example

Suppose F is a field.
Then ∗F is a field (because field axioms are first order).
Therefore SL(n,∗F) is generated by elementary matrices.
∴ SL(n, F) is boundedly generated by elementary matrices.
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Proof.
Recall: ⟨elem mats⟩r = {prod of ≤ r elem mats}.
So SL(n,∗F) =

⋃
r∈N⟨elem mats⟩r ⊆ ⟨elem mats⟩ω.

Obvious: r < s ⇒ ⟨elem mats⟩r ⊆ ⟨elem mats⟩s .
∴ SL(n,∗F) satisfies ∃r ∈ ∗N,∀x, x ∈ ⟨elem mats⟩r .
Transfer principle:

SL(n, F) satisfies ∃r ∈ N,∀x, x ∈ ⟨elem mats⟩r .

Exercise
Suppose S is a subset of a group G.
Show the following are equivalent:

1 S boundedly generates ⟨S⟩.
2 ⟨∗S⟩ = ∗⟨S⟩.
3 |∗⟨S⟩ : ⟨∗S⟩| is finite (or ∗-finite).
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Example (D. Carter, G. Keller, and E. Paige)

Nonstandard analysis provides a simple proof that
elementary matrices boundedly generate SL(3,Z).

Idea of proof.

There are (specific) first-order axioms Φ satisfied by Z,
such that if R is a ring satisfying these axioms,
then elementary matrices generate SL(3, R).

The methods have also yielded new results:

Corollary (D. Carter, G. Keller, and E. Paige)

Let T be a noncentral matrix in SL(3,Z).
Then the conjugates of T boundedly generate

a finite-index, normal subgroup.
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Proof.

Theorem (from 1960s). Suppose

R is commutative ring with stable range condition SR2, and
N is a normal subgroup of SL(3, R) (not in center).

Then ∃ ideal I of R, such that N contains
E(I) := {elem mats that are ≡ Id (mod I)}

= {elem mats}∩ SL(3,Z; I).

S = {conjs of T}. N = ⟨∗S⟩ = ⟨conjs of T in SL(3, ∗Z)⟩.
Theorem gives us an ideal I . (We may assume I is principal.)
Generalization of CKP Example: SL(3,∗Z; I)/⟨E(I)⟩ is finite.
Easy: for all q ∈ Z, SL(3,Z)/ SL(3,Z; qZ) is finite.

Transfer Principle: SL(3,∗Z)/ SL(3,∗Z; I) is ∗-finite.
Therefore SL(3,∗Z)/⟨E(I)⟩ is ∗-finite.
So
∣∣∗⟨S⟩/⟨∗S⟩

∣∣ ≤
∣∣SL(3, ∗Z)/⟨E(I)⟩

∣∣ is ∗-finite.
∴ Exercise tells us that S boundedly generates.
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Remark
Nonstandard analysis puts every set in our universe inside a
“finite” set:

Every A ∈ U is contained in a ∗-finite B ∈ ∗U:
∃n ∈ ∗N, ∃f ∈ ∗U, f : {0,1, . . . , n}& B.

For this theorem, need to take ultraproduct
with large index set, instead of N.
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Further reading

First-order logic and the Compactness Theorem
See almost any textbook on mathematical logic, or:

J. Barwise,
An introduction to first-order logic, pp. 5–46
in Handbook of Mathematical Logic.
North-Holland Publishing Co., New York, 1977.
ISBN: 0-7204-2285-X, MR0457132

Ultraproducts
See almost any textbook on model theory, or:

P. C. Eklof,
Ultraproducts for algebraists, pp. 105–137
in Handbook of Mathematical Logic.
North-Holland Publishing Co., New York, 1977.
ISBN: 0-7204-2285-X, MR0457132
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Nonstandard analysis
Several textbooks are available, such as:

M. Davis:
Applied Nonstandard Analysis.
Wiley-Interscience, New York, 1977.
ISBN: 0-471-19897-8, MR0505473

P. A. Loeb and M. Wolff, eds.:
Nonstandard Analysis for the Working Mathematician.
Kluwer, Dordrecht, 2000.
ISBN: 0-7923-6340-X, MR1790871
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Application to bounded generation of matrix groups

D. Carter, G. Keller, and E. Paige:
Bounded expressions in SL(n,A),
unpublished (c. 1985).

D. W. Morris:
Bounded generation of SL(n,A)

(after D. Carter, G. Keller, and E. Paige).
New York J. Math. 13 (2007), 383–421. MR2357719
http://nyjm.albany.edu/j/2007/13_383.html
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