Arithmetic subgroups of SL(n, R)

Dave Witte Morris

University of Lethbridge, Alberta, Canada
http://people.uleth.ca/~dave.morris
Dave.Morris@uleth.ca

Abstract

SL(2,Z) is an “arithmetic” subgroup of SL(2, R). The other
arithmetic subgroups are not as obvious, but they can be
constructed by using quaternion algebras. Replacing the
quaternion algebras with larger division algebras yields many
arithmetic subgroups of SL(n, R), with n > 2. In fact, a
calculation of group cohomology shows that the only other
way to construct arithmetic subgroups of SL(7, R) is by using
unitary groups.

Definition of arithmetic subgroup

Interested in integer points of a group G < SL(N, R):
elements of G whose matrix entries are int’s.
Gz = Gn SL(N, Z).

Spse G < SL(N,R) (and a technical cond'n is satisfied).
Then Gz is an arithmetic subgroup of G.

Example. SL(n,Z) is an arith subgroup of SL(n, R). J

Remark. We usually ignore finite groups.

G = H means some finite-index subgroup of G
is equal to some finite-index subgroup of H.

In other words, G and H are commensurable.

The technical condition
Need to assume G is defined over Q:
G is def’d by polynomial eq’ns with rat’l coeffs.

More precisely, there are polynomials

Si(x1,1, .., XNN), y Jm(X11,...,XNN)
with-goefficientsin Q,
st C= (gi,5) %(91,1,---,9N,N) =0
o - e SL(N,R) for all k

Equivalent if G is connected and [G, G] = G:
Gq is dense in G, where Gg = G N SL(N, Q).

= Gy is alattice in G  [Borel & Harish-Chandra, 1962] J

Definition. Subgroup G is called a “Q-form” of G. J

SO(1,n)z is a arithmetic subgroup of SO(1,n).

SO(1,n) ={g € SL(11T1_|+ 1,R) | gILnP%T =Iin},

-1
where 11,n=§ -1 E

=il
Write gIl,ngT = I, in terms of mat entries (g; ;).
Obtain (n + 1)2 polynomial eqns, with coeffs in Q.
Therefore SO(1,n) is defined over Q,

so SO(1,mn)z is an arithmetic subgroup. O

A Lie group G usually has many arithmetic subgrps,
because there are many embeddings G — SL(N, R),
which yield very different arithmetic subgroups.

Finding all the arithmetic subgroups of G
(up to commensurability)

is the same as finding all the Q-forms of G
(up to isomorphism).
The obvious Q-form of SL(7, R) is SL(n, Q),
corresponding to the arith subgrp SL(n, Z). \

These lectures:
how to find all of the others ’

An arithmetic subgroup of SL(n, C).

We need to embed SL(7, C) in some SL(N, R):
C = R?, so C" = R?", so SL(n,C) — SL(2n, R).
Then SL(n,C)z = SL(n,C) n SL(2n,Z).

This depends on the identification @: R > C:
For @ (a,b) = a + bi, we hav (ﬁ Z[1i],

so Z%" is identified with Z[i] = c C™.
Since SL(2n,Z) = {g € SL(2n,R) | gZ?" = 7°"},
SL(n,C)z = SL(n,C) N SL(ZWEZ) ml L

1
= {9;§SLG) | g ZLi] "= Zli] T}
= SL n,Z[i] .

Exercise. Another arithmetic subgroup of SL(2,R).

The quaternions [I-b[l—l] L-1 can EFmbTﬂed in Matlbﬁl((c}:l
LT i i 0 . 0 1 0 i

0 —i*Jd~ 10 k~W= 4 ¢-

Choose square -free a,b € 7*.

HS? = ZI + giy 7j + Gkes Mq@z(%
\{)a—?F’J bo,k—ij.
SL(2,R) acts on Matzx«» (R) by multiplication gA.
For @: R4 = Matz,2(R) with @(Z4) = H%?,

SL(2, R)z &ﬁ €SL,R) | gHE? = HAP

“” = SL(1,H%").

where i =

SL(1,H%") is an arithmetic subgroup of SL(2, R) |

In general, SL(n, I]-I]%‘b) is arith subgrp of SL(2n, R). J

Remark
o If HQ is a division algepra, (Vx + 0,3y,xy = 1),
(hnotnorminQ Ja; b=0O-al)
then SL(n, I]-I]%‘b) not commens’ble to SL(2n, Z).
@ D any (finite-dimensional) division algebra over Q,
and D ® R = Matgx4(R),
= SL(n, Dz) is an arith subgroup of SL(dn, R).

Summary: Some arithmetic subgroups of SL(n, R)
can be constructed from division algebras.

All the others come from unitary groups. J

How to find the Q-forms of SL(n, R)

Let G = SL(n,R). Suppose p: G = SL(N, R),
such that p(G) is defined over Q.

Find p(G@] by u%g Galois theory: -
Q = z% z)-z%aeGal((C/Q)r__l
o(h) = h,
SL(N,Q) = h e SL(N,C) o € Gal(C/Q)
P(G)QDP(G h(N,Q)
= A) (g) =p(g), Vo € Gal(C/Q)
= g e Gc ) =g, Yo € Gal(C/Q)
where &3 p~lop: Gc — Gc.

Every Q-form of G is the fixed points of
an action of Gal(C/Q) on Gc.




What are the arithmetic subgrps of G = SL(n,R)?
Embed G = SL(N,R). Find Gz = G n SL(N, 7). J

Same problem: Find Ggq. (“Q-form”) J
[

Every Q-form of G is the fixed points of
an action of Gal(C/Q) on Gc. J

0

Gee B
SL(n,Q@) = g € Gc Vo €Gal(C/Q), 0(9) =g - |

O

G B
Gao= g€Gc Vo eGa(C/Q), dy) =g - |

Every Q-form of G is the fixed points of
an action of Gal(C/Q) on Gc.

Let &y = @d': Gc — Gc. (continuous automorphism)
So &y € Aut(Gc). Thus, x: Gal(C/Q) — Aut(Gc).

Group cohomology

Function c: ¥ — A is k-cochain € Ck(I'; A).
Coboundary &y: CK(T; A) — Ck*1(r; A)

@ dpa(g) =% —a

@ l-cocycle & 61¢ =0 < c(gh) =c(g) +9c(h)

Note. &g = p~topo~! = p~19% looks like a cobdry
so it is a 1-cocycle. . .
So it defines an element of H! Gal(C/Q), Aut(Gc) .

Go ~ [ﬁ] provides a 1-1 C@respondence between
H! Gal(C/Q),Aut(Gc) and the set of Q-forms.

Finding the arithmetic subgrps of G amounts to
calculati he “Galois cohomolog set”

H!' Gal(C/Q), Aut(G¢) .

This is a special case of a fairly general principle:
If X is z?% algebraic object defined over Q, then
H! Gal(C/Q), Aut(Xc¢)
1-1 L]
~— Q-forms of X }

Q-isomorphism classes of

= Q-defined objects whose
C-points are isomorphic to Xc

1

Example

Suppose V; and V5, are two vector spaces over Q,
and they are isomorphic over C.
(Le,Vi®C=V,®C.)
Then dim V; = dim V>,
so V; and V» are isomorphic over Q.
Thus, the %form of any vectqe-space is unique,
so H! Gal(C/Q),Aut(Vc) =0,
for any vectorgpace V over Q.
In other words, H! Gal(C/Q), GL(n,C) = 0.

1

1
Similarly: H! Gal(C/Q), SL(n, C) 0 J

(| ]
Warning. H! Gal(C/Q), PSL(n,C) =+ 0. |

Q-forms trom Galois cohomology

We will find all the-@-forms of SL{, R),
by calculating H' Gal(C/Q), Aut SL(n,C)

Fact. Only outer automorphism of G¢ = SL(n, C) is
transpose-inverse (w(g) = (g")~h.
So Aut(Gc) = PSL(n,C) X (w).

(| (|
Q-form Goq ~ «€ H' Gal(C/Q),Aut(Gc)
We consider two cases:
1 ]
Q@ x € H' Gal(C/Q), PSL(n, C) .
© Image of x ¢ PSL(n, C).

Case 1. Assume & € H! Gal(C/Q),PSL(n, C)

Fact. Every C-linear aut of algebra Mat;,»;, (C) is inner
— itis conjugation by matrix ip{zL(n, C).
Scalars act trivially: Aut Mat,«,(C) = PSL(n,C).
H! I%Ial(CI/f)ﬁ),PSL(n, Q)
= H! Gal(C/Q), Aut Maty,x,(C)
= {I%orms of Mat,; 5, (C) } —

algebras A over Q,
such that A ® C = Mat;;x»(C)

A must be simple, so, by Wedderburn’s Theorem,

A = Maty (D), where D is a division alg over Q.
(and the center of D must be Q)

The corresponding Q-form Ggq is SL(k, D).

Case 1. Assume « € H! Gal(C/Q),PSL(n,C) |

Case 2. Assume image of & & PSL(n, C).

« induces nontrivial
ox: Gal(C/Q) — Aut Out(Ge) = Z».
Action of Gal(C/Q) on Z; is trivial, so & is a homo.
Kernel of « is a subgroup of index 2 in (?ﬁl(%@),
so fixed field is a quadratic extension Q /» of Q.
Considerany g € Gg = {g € Gc | gF=g,V0}.
For simplicity, assume « is trivial on ker «.
(If not, re is—a diysion algebra involved.)
If o € Gal C/Q /r = kerq, then . is trivial.
This means¢ 150 g% = 9" = g.
Sog e SL n,Q Jr .

Go<SSLm,Qyr

S

I [ -
LetGal Q /+ /Q =1{1,n}, so n ¢ kera.
Then &, = (conj by A) w for some A € GL(n, R).

[ |
We have g = (@) = apn(g) = A ("g)T — A7,
sogA(lg)T = A.
If n =" and A = I, this means gg* =1I,
so g € SU(n)q[/7]- (unitary group)
If A=1Ipmyu=dag(l,1,...,1, -1,-1,...,-1),
S0 ZAZ* = |z112 + - - - + |zm|?
- |Zm+1|2 — = |Zm+n|2;
then g € SU(m, n)q[ /7.

1
In general, we have g € SU A, n;Q Jr .

Corrections

Intermediate case

We seem to have shown that all arithmetic subgroups of
SL(n, R) can be constructed from either division algebras
(Case 1) or unitary groups (Case 2). However, the discussion
in Case 2 assumes that the restriction of « to the kernel of &
is trivial. If we remove this restpigtiop;;then; by the argument
of Case 1, the cocycle from Gal C/Q / into PSIxq,
yields a simple algebra Matk (D) whpse center is Q /¥ . The
Galois automorphism n of Q /r can be extended to an
anti-automorphism f-df D. Then, for some A € Matg (D), the
corresponding{Q-forgajis— o
Go=SU A,izD = g eSL(k,D) AghT =A .
Note that this Q-form is obtained by combining unitary
groups with division algebras.




Cocompact arithmetic subgroups

One more technique (familiar from the case of SL(2, R)) is
needed in order to obtain all of the arithmetic subgroups of
SL(n, R), because the above techniques do not suffice to
construct some cocompact examples. The key point is that
we need to slightly extend the definition of an arithmetic
subgroup. Namely, instead of requiring I' to be the integer
points of G itself, it may be necessary to choose a compact
group K, such that G x K is defined over Q, and allow I' to be
the projection of (G x K)z to G. Because of this, Gg can be a
unitary group over a (totally real) extension of @Q, rather than
over Q itself. In other words, we need to consider arithmetic
subgroups obtained from “Restriction of Scalars”.

To discuss Galois cohomology, we replaced R with the
algebraically closed field C. Thus, some of the groups we
found might not be Q-forms of SL(n, R) (although we know
that thei;jpmplﬁiﬁ@t_ipn is SL(3, C)). For example, if
Go=SU J,n;Q /¥ ,andv <0, then Gg is SU(2,1), not
SL(3,R).

@ In practice, one can determine which of the groups we
constructed are Q-forms of SL(3, R).

@ Abstractly, SL(3, R) is an R-form of SL(3, C), so, by the
general prmqala,le itis representqeﬁl,by a cohomology
class B € H! Gal(C/R),Aut(Gc) . There is a natural
restrictipg homomorphism

r: H!' Gal(C/Q),Aut(Gc) — H! Gal(C/IR) Aut(G()
and the Q-forms of SL(3, R) are represented by the
elements of r~1(B).

For Galois cohomology, we should really be using
thealgebraic closyrg Q of Q, instead of C, and

H! Gal(Q/Q), Gg—is defined tobg the natural limit
of the groups H! Gal(F/Q), Gg , where F ranges
over all finite extensions of Q.

Why unitary groups are arithmetic

Proposition
@ n = Galois automorphism of Q /¥ + Q,
where v € %is squaﬁ-lfree,
ich m na+byr =a->b.r,
Wi mianp 27 o
e J= Ell Elor if you prefer, J = H -1 H
-1
o s o o
=g€SL3Zf J("g)T =T .
Then T, is an arithmetic subgroup of SL(3,R).

Theorem (Weil 1960 (or Siegel earlier?))

Suppose I is an arithmetic subgroup of G = SL(3, R).
If G/T is not compact, then I' is commensurable to
either SL(3,Z) or [, for some 7.

The value of 7 is unique: if 1, # 1, then
no finite-index subgroup of I, is isomorphic to
a ﬁmte index subl%roup of Iy,.
Q\/T th\ﬁ = keroq + ker o
= O(1#=(X2 = 0(17L0(2
= Q-forms are different.

(But different A’s sometimes give the same Q-form.)

Want: I, is an arithmetic subgroup of G = SL(3, R) J

Construct embedding p: G — SL(6,R),
such that p(G) n SL(6,Z) = p(Ty).

Note: 1 1

* % %X
* % X

GXG= SL(6, R).

Let G2 {(g,h) eGxG|gJh" =]}

G2 {(g,h) eGxGlgJh" =]} J

Each g determines a unique h, so 2 G.
We may let p(G) = ¢

(1,1) and (\/r, —+/7) are linearly independent,
so they form a basis of RZ.
Thus, 3 ipvprtible linear trans RS that maps %ﬁjo
N= (x,y,z,x" " z") WV, ZEL Jr
Since SL(6,7Z) = {a € SL(6,R) | azb = 756},
this means we may pretend (after a change of basis)
(GxG)nSL(6,2)
= £, 1) 6% G Iita I zefeh
= (g,9M eSL 3,7 v

Want: p(G) N SL(6,7) = p ().
Know: p(G) =G {(g,h) e GxG|gJh" =]},
and (G X Gy SL(6, 0 O

= (9,9") BgeSL 3,2 Jr

Then
py) ={(g,9" 1g €T},

1 O
p(G) “&6@%@— 6% @) peph6A0)
_ . eSL 3,2 Jr
(9.9" 9] (gD =

1 % (]
= (g9,g") E@esu J,mz Jr
= p(y).

and

[p(G) NSL(6,2) = p(Tr)]| J

Conclude T, is arith subgrp if p(G) def’d over Q. ]

Can be done directly (find polynomials with coeffs in @),
but it is confusing - need to work in a strange basis.

Instead, we will Verify that Gq is dense in G. |
Gz =Ty = SU VA -
2= 5 Jlﬂ o -
= gESL3Zf J@mT=1J .

iGQ:SIL_LIJn@:T/i I:I

= geSL3Q\F J@gn' =




I

Ga= geSL3,Qyr B3y =7 J

X* ok

1
This is dense in U = El 1 % El
1
Gq also contains a dense subgroup of U™.
(In fact, it is easy to verify that (Gq)" = Gq.)
Since (U,UT) = SL(3,R) = G,
this implies Gq is dense in G.

Lecture 3
How to make erithrmetiestbgretps of SL(n, R)

1) division algebras Q-forms  2) ynitary groups
3) combination of the two

1. Division algebras

division algebra D over QQ, such that D ® R = Matyxq(R)
~ Q-form SL(n, D) of SL(dn, R).

HG' = Q+Qi+Qj+Qk (= a,j* = b,k i 1)
=F+Fj F=Q+Qi=Q Ja
J*=b, jx=x"j, (n) = Gal(F/Q)
Division algebra if b is not a norm in F
b+xx"=0-al

Hg = F +Fj,
IF:Ql =2, j*=beQ, jx=x"j, (n)=Gal(F/Q) ’

How to make a division algebra over Q

D=F+Fj+Fj2+ ---+Fji1 (cyclic)
IF:Q|=d, j4=beQ,jx =x"j, (n)= Gal(F/Q)

Eg. Choose p =1 (mod d&). 3 e € Z; of order (111:'— 1)/d. J

)
LetC = %1, and F=Q CE+C92+ .. _’_ge(vfl)/d

Division algebra if b™ not a norm in F, for m < d.
2 d—
b™ # x x - xn?! (m = 1if d is prime) ’

Gqg = SL(k,D). Gz = SL(k,Dz).
F = Q[@], where @ is alg’ic int, and let O = Z[@].
Then D7 =0+ 0j+O0j2+---+0j%L ifbez.

1. Division algebras ]

2. Unitary groups
F=Q 7, and (n) = GglF/Q).
A € GL(n,F) Hermitian (AT =A
Can ume A = diag(ay,..., , a; € Qx.
= . = mT =
Gaq SUlﬁ’n’FIZI Eg]e SL(n, F) AgnH'=A .
Gz=SU A,n;Z v

Note: F Ii_sluniq]ﬁly deﬁrminﬂ by Gg.
But SU A,n;F = SU B,n;F if B= XA(X")T.
= can make A diagonal

3. Combination )

0. O
F=Q Vv, and (n) = Galf'/ Q).
A e GL(

) H jitian (A”)T:% O
Gq=SU A,n;F = g e SL(n,F) AghT=A .

3. Combine division algebras with unitary groups
F=Q /v, and (n) = Gal(F/Q).
Division algebra D over F, such that
n extends to antiaut nlflf D: (abl)fl = b an,
A € GL(n,D) Hermitian (AMT = A

(Can gssjume Aljdiag(al ..... anﬁﬂ a; € % a" = a;.)
Go=SUA,n;D , Gz = SU A, n; Dz

Same methods apply to other groups

Galois cohomology finds arithmetic subgroups of
any simple Lie group, not just SL(n, R). ’

Mlustration: find the simple Lie groups (over R). J

Simple Lie groups over C

Type A, B, C, D, E F, G.
@ E, F, and G are exceptional groups — ignore.
@ A - D are classical.

Type A: G¢c = SL(n, C).

Obvious R-form is SL(n,[@. -
Previous discusl%on: x e H! Gal((CélF), Aut(Ge) .
Case 1. x € H! Gal(C/R),Inn(G¢) . “Inner form”

Comes from division algebra over R.

Only division algebra is H: Gg = SL(k, H).
Case 2. &: Gal(C/R) — Out(G¢) nontriv. O‘fléifn

@ Unitary group: Ggr = SU(m,n).
@ Combine upifapy,group with division algebra

over F=R /v =C. 37 divalgover C.
Type B: G¢c = SO(n, C), with n odd.

Out(Gc) trivial, so all R-forms are inner.

Gr = SO(p, q).

Type C:
Gc = Sp(2n,C) = {g € SL2n,C) 1 gJg" = J } |
1

1
where J = E %
-1

Obvious R-form is Sp(2n, R). 1

Out(Gc) is trivial (so forms inner), but can use H:

Gr = SU(Ip,q, n;H) = Sp(p, q).
na-+bi+cj+dk)=a-bi—-cj—dk

Type D: G¢c = SO(2n,C). Obvious Gg = SO(p,q).
Out(Ge) = Z, (if 2n # 8), but inner in O(2n, C).
Can use quaternions:
Gr = SU, i5H) = SO(n,H) = SO*(n).
&+ bi+cj+dk)=a+bi—cj+dk

Arithmetic groups of classical type

Gq = SL(n, F), SL(n, D), SU(A, n; F), SU(A,n; D)
= Gr = SL(n, R), SL(n, €), SL(n, H), SU(p, q),
or product of these

Ga = SO(AF) = Ga=50(2,4), SO0 pie |

Ga = SUA, HEY) = Gr = SO(n, H),
or preceding orthogonal groups or product

Gq = Sp(n, F), SU(A, n, HE")
= Gr = Sp(n,R), Sp(n,C), Sp(p,q) or product




Gq = SL(?’L,I,E?, SL({Z’Z,BP, SU(A’n;F)I:ISO(A'uFb)D
SU A!ﬂ-ﬂF‘ ] Sp(nsF)a SU Aln![H]F,

This lists all Q-forms of classical simple Lie groups
(SL, SO, SU, Sp)
except some outer forms of
SO(8,C), SO(p,8 —p), SO4,H).
Missing: t(S6lc) < 6:
Image of & can be Z3 or S3. (not trivial or Z>)
“triality” groups
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(Examples of Lattices chapter includes sections on lattices in
SL(3, R) and, more generally, SL(7, R).

Arithmetic Lattices in Classical Groups chapter describes the
arithmetic subgrps of all classical Lie grps, not just SL(n, R).




