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Abstract. Write down any three numbers as the first row of a
3× 3 matrix. Unless all three of these numbers are zero, it is
easy to fill out the other two rows to make a matrix that has
an inverse. The problem is more interesting if we put
restrictions on the numbers that are allowed (such as only
allowing whole numbers) or allow matrix entries that are not
numbers (such as using a polynomial f(x,y, z) for a matrix
entry). This leads to surprising connections with other areas
of mathematics.
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⎡
⎢⎣

9 0 5
??? ??? ???
??? ??? ???

⎤
⎥⎦ Can we fill in the rest

to make it invertible?

⎡
⎢⎣

0 0 0
??? ??? ???
??? ??? ???

⎤
⎥⎦

Eg.

⎡
⎢⎣

0 0 0
??? ??? ???
??? ??? ???

⎤
⎥⎦

⎡
⎢⎣
b1 ∗ ∗
b2 ∗ ∗
b3 ∗ ∗

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦.

top-left corner: 1 = 0b1 + 0b2 + 0b3 = 0. Nonsense!

Proposition
1st row of inv’ble matrix can be anything but all 0’s.

Proof.

⎡
⎢⎣
a1 a2 a3

??? ??? ???
??? ??? ???

⎤
⎥⎦
a1 ̸= 0
!⇒

⎡
⎢⎣
a1 a2 a3

0 1 0
0 0 1

⎤
⎥⎦ inv’ble.
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Question
What does the first row of an inv’ble matrix look like?

Answer: It can be anything but all 0’s.

More interesting: restrict the matrix entries.

Requirement

Entries of matrices (including A−1) must be integers.

Eg.

⎡
⎢⎣

2 4 6
??? ??? ???
??? ??? ???

⎤
⎥⎦

⎡
⎢⎣
b1 ??? ???
b2 ??? ???
b3 ??? ???

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦

top-left
corner:

1 = 2b1 + 4b2 + 6b3 = 2(b1 + 2b2 + 3b3)
!⇒ odd = even. Nonsense!
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Proposition
[a1 a2 a3] is 1st row of an inv’ble mat (integer entries)

⇐⇒ a1, a2, a3 have no common factor.

Key fact. Column operations preserve invertibility.
Add/subtract mults of one column from other cols.

⎡
⎢⎣

36 45 10
??? ??? ???
??? ??? ???

⎤
⎥⎦→

⎡
⎢⎣

6 5 10
??? ??? ???
??? ??? ???

⎤
⎥⎦→

⎡
⎢⎣

1 5 0
??? ??? ???
??? ??? ???

⎤
⎥⎦→

⎡
⎢⎣

1 0 0
??? ??? ???
??? ??? ???

⎤
⎥⎦

⎡
⎢⎣

36 45 10
7 9 2
3 4 1

⎤
⎥⎦←

⎡
⎢⎣

6 5 10
1 1 2
0 0 1

⎤
⎥⎦←

⎡
⎢⎣

1 5 0
0 1 0
0 0 1

⎤
⎥⎦←

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦
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What does 1st row of an inv’ble matrix look like?
All entries must be polynomials in x,y, z.

Eg.

[
(x + 2yz)2 x2 + 2xyz + 1

x2 + 2xyz−1 x2

]−1

=
[

x2 −1−x2−2xyz
1−x2−2xyz (x + 2yz)2

]

Eg.

⎡
⎢⎣
x y z
??? ??? ???
??? ??? ???

⎤
⎥⎦

⎡
⎢⎣
p(x,y, z) ??? ???
q(x,y, z) ??? ???
r(x,y, z) ??? ???

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦

top-left corner:
1 = xp(x,y, z)+y q(x,y, z)+ z r(x,y, z)

!⇒ 1 = 0 ·p(0,0,0)+0 ·q(0,0,0)+0 ·r(0,0,0) = 0.
Nonsense!
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Proposition⎡
⎢⎣
a1 a2 a3

??? ??? ???
??? ??? ???

⎤
⎥⎦

⎡
⎢⎣
p1 ??? ???
p2 ??? ???
p3 ??? ???

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦

!⇒ a1p1 + a2p2 + a3p3 = 1
!⇒ (a1, a2, a3) is “unimodular”

Serre (1955): We don’t know whether
every unimodular row (of polynomials)
can be completed to an invertible matrix.

Fact
matrix is inv’ble ⇐⇒ rows are linearly independent.
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Ques: Can every unimodular row (of polynomials)
be completed to an invertible matrix?

We can look at this problem geometrically:
(a1, a2, a3) =

(
a1(x,y, z), a2(x,y, z), a3(x,y, z)

)

defines a vector field.

2 y
1

2x1

1

z
2

⎡
⎢⎣
a1 a2 a3

b1 b2 b3

c1 c2 c3

⎤
⎥⎦ invertible

!⇒ (a1, a2, a3) and (b1, b2, b3)
are lin indep everywhere.

Question: Given a unimodular vector field
"→
A,

is there a vf
"→
B that’s lin indep from

"→
A everywhere?
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Question: Given a unimodular vector field
"→
A,

is there a vf
"→
B that’s lin indep from

"→
A everywhere?

Spse we only consider points on the unit sphere
x2 +y2 + z2 = 1.

Let
"→
A = (x,y, z) = “up”.

unimodular?
x#x +y#y + z#z = 1✓

¿ Is there a vector field
"→
B

that is never parallel to
"→
A?

Topology theorem says no: every continuous vector fld
on the sphere points straight up (or down) somewhere.

(“You can’t comb the hair on a coconut”)
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Question: Given a (unimodular) vector field
"→
A,

is there a vf
"→
B that’s always lin indep from

"→
A?

No on sphere. But what about R3?

Topologist’s answer:
"→
A⊥ is a vector bundle on R3,
R3 is contractible,
so every vector bundle on R3 is trivial,
every (nonzero) trivial vector bundle has a nowhere

zero section.
∴Yes, there is a continuous vector field

"→
B .

But we want a polynomial vector field!
Dave Witte Morris (U of Lethbridge) First row of an invertible matrix Wesleyan U, March 2018 9 / 14

Question: Given a (unimodular) vector field
"→
A,

is there a vf
"→
B that is lin indep from

"→
A everywhere?

(
"→
A and

"→
B are polynomials)

Answer (Quillen & Suslin 1976): yes.

Ques: What does 1st row of inv’ble mat look like?

Answer (for real numbers, integers, polynomials):
It must be unimodular.
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Theorem (Quillen & Suslin 1976)
Every unimodular row of polynomials can be
completed to an invertible matrix.

Exercise
Every unimodular row of integers can be completed
to an invertible matrix.

Proof. [a1, a2, a3] unimodular row of integers
!⇒ can reduce to [1,0,0] by column ops.

Open problem (Algebraic K-Theory )
[a1, a2, a3] unimodular row of polynomials

?
!⇒ can reduce to [1,0,0] by column ops.
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[a1, a2, a3] unimodular row of integers
% [1,0,0] by column ops.

Theorem (Carter-Keller 1983)
[a1, a2, a3] unimodular row of integers

% [1,0,0] by 50 column ops (over Z).

Fact
[a1, a2] unimodular row of integers

%̸ [1,0] by bdd # of column ops (over Z).

Theorem (Vsemirnov 2014)
[a1, a2] unimodular row of integers

% [1,0] by 4 column ops (over Z[1/p]).
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Theorem. [a1, a2] unimodular row of integers
% [1,0] by 4 column ops (over Z[1/p]).

Easy proof
Assume Artin’s Conjecture: ∀r ≠± 1, perfect square,

∃ ∞ primes q, s.t. r is primitive root modulo q:
{ r , r 2, r 3, . . . } mod q = {1,2,3, . . . , q−1}

Assume ∃q in any arithmetic progression {a+ kb}.
∀[a, b], ∃ q = a+kb, p is a primitive root mod q.

Proof.
[a, b] q = a+ kb prime, p is prim root

% [q, b] pℓ ≡b (mod q); pℓ = b + k′q
% [q,pℓ] pℓ unit: can add anything to q
% [1, pℓ] % [1,0]
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