
ZERO-ENTROPY AFFINE MAPS ON HOMOGENEOUS SPACES 

1. Introduction. If r is a closed subgroup of a connected Lie group 
G ,  then each element g of G acts by translation on the homogeneous space 
F\G, namely T g :  Fs H' Ysg. Generalizing theorems of W. Parry [16] and 
M. Ratner [18], this paper shows any measure-theoretic isomorphism of 
ergodic unipotent translations on finite-volume homogeneous spaces of 
connected Lie groups is "algebraic." It also presents a fairly successful 
attack on the isomorphism question for more general translations of zero 
entropy, but the results are not definitive. 

Definition. Let F and A be closed subgroups of Lie groups G and H, 
and suppose a :  G -Ã H is a group homomorphism with T" C A. For any 
h e H ,  the map Tab : F\G + A\H: Fs I+ Asah is said to be an affine map. 

Remark. Any translation To on r\G is an affine map from r\G to 
itself (let a be the identity map, and set h = g in the definition). 

Definition. A homogeneous space T\G is faithful if F contains no 
nontrivial normal subgroup of G .  Since one can mod out any normal sub- 
group of G contained in r ,  it generally causes no real loss of generality to 
consider only faithful homogeneous spaces. 

Definition 1 . l .  Recall that a matrix A is unipotent if it has no eigen- 
value other than 1 (i.e., if A - Id is nilpotent, where Id is the identity 
matrix). An affine map ToVa: F \G -Ã r \G of a homogeneous space onto 
itself is unipotent if the composition Da 0 Adg is a unipotent linear trans- 
formation on the Lie algebra of G .  (Where Da is the derivative of a at 
e e G . )  

THEOREM 2.1'. Suppose T i  and T2 are volume-preserving invertible 
ergodic unipotent affine maps on faithful finite-volume homogeneous 
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spaces T \G and A\H of connected Lie groups G and H. If $ : T\G -> A\H 
is a measure-preserving Borel map which conjugates TI to T2 ( i .e . ,  i f  
Tl $ = m), then $ is an affine map (a. e. ). 

It  is natural to try to extend Theorem 2.1 ' to the class of zero-entropy 
translations. (An affine map ToVg has zero entropy iff \XI  = 1 for all eigen- 
values X of Da o Adg (see Lemma 6.1), so any unipotent affine map has 
zero entropy.) But isomorphisms of general zero-entropy translations need 
not be affine maps. For example, as a part of his definitive study of transla- 
tions on homogeneous spaces of solvable groups in the 1960's (see [I]), 
L. Auslander showed that a zero-entropy ergodic translation on a finite- 
volume homogeneous space of any solvable group is isomorphic to a trans- 
lation on a homogeneous space of some nilpotent group. If the solvable 
group is not nilpotent, this isomorphism cannot be realized by an affine 
map, because the groups involved are not isomorphic. Analogously, we 
show (roughly) that any zero-entropy ergodic translation is finitely covered 
by a translation on a homogeneous space of a group whose radical is nilpo- 
tent. (The radical of a group is its largest connected solvable normal sub- 
group.) Essentially this means we can restrict attention to groups whose 
radical is nilpotent, but there is an unresolved bit of ambiguity resulting 
from the passage to a finite cover. 

LEMMA 6.5'. Let T be an ergodic volume-preserving zero-entropy 
invertible affine map on a finite-volume homogeneous space T \G of a con- 
nected Lie group G. Then there is an ergodic volume-preserving invertible 
zero-entropy affine map T' on a finite-volume homogeneous space Y '\GI 
of a connected Lie group G' whose radical is nilpotent, such that, for some 
nonzero n e Z ,  (T' , T'\G ') finitely covers (Tn, T\G). I.e., there is afinite- 
to-one measure-preserving Borel map 4' : Y1\G' -> r \ G  which conju- 
gates T' to Tn. 

Because of the finite cover introduced in Lemma 6.5', it is convenient 
to study a generalized notion of conjugacy. 

Definition. An ergodic TI X T2-invariant measure $ on Sl X S 2  is 
an ergodic joining of two ergodic measure preserving dynamical systems 
(TI, S l ,  pi) and (Tz, S2, p2) if t,h projects to the measure {.LI on Sl and to p2 
on S2. 

Definition. Let $ be an ergodic joining of (Ti, Sl,  pi) with (T2, 5'2, 
p2). It is well known (see [22]) that there is an essentially unique family 
{$s : s e Sl } of measures on S2 such that, for any measurable A C Sl X S2, 
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$(A) = $,(A n ({s } X S2))dPl(s). We say $ has finite fibers over Sl if 
the support of a.e. $, is a finite set. 

Remark. If $: (Ti, Sl ,  pi) -Ã  ̂ (T2, S2, p2) is a measure preserving 
conjugacy, then the graph of $ supports an ergodic joining of (Ti, S l ,  pi) 
with (T2, S2, p2) having finite fibers over Sl. 

Definition. Suppose $: T\G + A\H is affine, and let K C H be a 
compact subgroup of H. Suppose there is a continuous group homomor- 
phism G -Ã K :  x l-> i with f' = e (this happens whenever there is an er- 
godic translation on T \G which is not weak-mixing). If $ is a conjugacy of 
T, with Th, and if K centralizes h,  then the map *: T\G ->Â A\H: Ts I+ 

Ts$ . i is a conjugacy of Tg with Thh, but it is usually not an affine map. We 
say & is a twisted affine map. One can similarly define twisted affine join- 
ings (see Theorem 6.7). 

THEOREM 6.7'. Suppose Tl and T2 are ergodic zero-entropy affine 
maps on finite-volume homogeneous spaces T\G and A\H of connected 
Lie groups G and H,  and let $ be an ergodic joining of (TI, T \G) with (T2, 
A\ H )  with finite fibers over T \G. Assume rad G and rad H are nilpotent. 
Then $ is a twisted affine joining. 

In combination with Lemma 6.5', Theorem 6.7' determines whether 
two ergodic zero-entropy translations have a joining with finite fibers. This 
would settle the isomorphism question if one could cross the gap between 
maps and joinings, but the author has no serious ideas on how to do so. 

We have seen in Theorem 2.1 ' that for unipotent translations there is 
no need to introduce finite covers or twists. The same is true for weak- 
mixing translations. 

COROLLARY 6.8'. Suppose Ti and Ti are ergodic volume-preserving 
zero-entropy invertible affine maps on finite-volume homogeneous spaces 
T\G and A\H of connected Lie groups G and H. Assume (Ti, F \G) is 
weak-mixing. Then any measure-preserving conjugacy $ : (Ti, T \G) -Ã 

(T2, A\H) is an affine map (a.e.). 
This paper does not consider translations of nonzero entropy because 

, the situation there is quite different. For example, D. Ornstein and B. 
Weiss [IS] proved all translations of nonzero entropy on finite-volume ho- 
mogeneous spaces of SL2(R) are isomorphic to Bernoulli shifts. (See [6] for 
an extension of this result.) The isomorphism question for translations of 
nonzero entropy remains open. In particular, which translations are Ber- 
noulli? 
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Overview. Section 2 presents the statement and proof of the main 
theorem (2.1) on joinings of unipotent affine maps. The following sections 
(Sections 3, 4, 5) supply some details which were omitted from Section 2. 
Finally, Section 6 shows how to derive the results on zero-entropy transla- 
tions from the main theorem. 

Acknowledgments. Theorem 2.1 ' is the main theorem of my Ph.D. 
thesis (University of Chicago, 1985). This research was greatly aided by 
discussions with L. Auslander, S. G. Dani, C. C. Moore, M. Ratner, and 
my thesis advisor, Robert J.  Zimmer. I am indebted to G. Bergman for 
Theorem 3.13, which is a great simplification of my original treatment, to 
N. Wallach for Lemma 3.14, which I had been unable to prove, and to 
S. G .  Dani for pointing out several deficiencies in my original manuscript, 
including a serious error in the statement and proof of Theorem 3.16. The 
work was supported by a Sloan Doctoral Dissertation Fellowship and an 
NSF Postdoctoral Fellowship. 

2. The main theorem. See Section 1 and Section 3A for definitions 
used here. 

THEOREM 2.1. Suppose T I  and T2 are ergodic volume-preserving in- 
vertible unipotent affine maps on faithful finite-volume homogeneous 
spaces F \G and A\H of connected Lie groups G and H, and let $ be any 
ergodic joining of ( T i ,  T\G) with (T2,  A\H) having finite fibers over T\G. 
Then $ is an affine joining. I.e. ,  there is a finite cover G'  of G, a lattice T ' 
in G '  , and a measure-preserving affine map 4> : I' ' \G' + A\H such that, 
under the natural map T' \G' X A\H -Ã T\G X A\H, the joining on 
T ' \G' X A\H associated to 4> projects to $. 

No new ergodic-theoretic ideas are needed in this paper. All the neces- 
sary techniques were developed by Ratner [18,19,20,21] and were used in 
the author's previous work [24]. Where possible, instead of reproducing 
these arguments we refer the reader to Ratner's original work or the au- 
thor's reformulation of it. Proofs (including most of the algebra) which 
might not be routine even for the expert familiar with [18,19,20] and [24] 
are presented in later sections. 

Assumption 2.2. We give the proof of the main theorem (2.1) only 
for translations, because this provides for some simplification of the nota- 
tion. Remarks 4.16 and 5.1 indicate why affine maps are not much more 
difficult to treat. Furthermore, we deal only with the case of a map $: T \G 
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-> A\H instead of the more general joinings with finite fibers. This entails 
enormous notational (and conceptual) simplification. For an illustration 
of Ratner's idea which extends these arguments to the general case, see 
[19, Lemmas 4.2 and 4.41 or [24, Lemmas 7.7 and 7.81. (See also [20].) 

Definition 2.3. Suppose g e G, h e H, and $: T\G -+ A\H is mea- 
sure preserving. We say $ is affine for g (via h )  if, for a.e. s e r \G, we have 
sg$ = s+h. Note that h is uniquely determined by g if A\H is faithful. In 
note of this we often write h = g. When Xis some subset of G, we often say 
g5 is affine forX to indicate that $ is affine for every element of X. If A\H is 
faithful, it is not hard to see that $ is an affine map (a.e.) if and only if $ is 
affine for G. 

It is sometimes convenient to assume G is simply connected. Because 
this may conflict with the assumption that T\G is faithful, it is useful to 
introduce a weaker notion. 

Definition 2.4. T\G is locally faithful if F contains no connected 
nontrivial normal subgroup of G. 

Remark. Previous authors [I,  41 used the term presentation to refer 
to a locally faithful homogeneous space, but this doesn't seem to be a very 
descriptive word. 

The main theorem can be restated in this language. 

THEOREM 2.5. Let u and ii be ergodic unipotent translations on lo- 
cally faithful finite-volume homogeneous spaces T\G and A\H of con- 
nected Lie groups G and H ,  and assume $: T\G -+ A\H is a measure- 
preserving Bore1 map. I f  $ is affine for u via ii, then $ is affine for G. 

The proof of the theorem begins with a technical result establishing 
that T\G and A\H are very nice homogeneous spaces. 

PROPOSITION 2.6 (see Propositions 4.23 and 4.19). Because T\G 
supports an ergodic unipotent translation, we have: 

1. T is discrete; 
2. rad G is nilpotent (so G is locally algebraic); 
3. I' intersects each of Z(G) and rad G in a lattice; and 
4. r projects densely into the maximal compact semisimple factor 

of G. 

Analogous results hold for Hand A. 
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Assumptions. For simplicity, we assume T\G and A\H are com- 
pact. The general case requires no new ideas not present in Ratner's origi- 
nal work [ l a ] .  Furthermore, we avoid technical complications by pretend- 
ing G and H are real algebraic groups. Since we know they are in fact 
locally algebraic it is not hard to modify these arguments for the general 
case. 

The following lemma presents one consequence of the "polynomial 
divergence of orbits." 

LEMMA 2.7. Let I be an interval on the real line. For any e, 0 > 0 ,  
there is 6 > 0  satisfying: i f  s ,  t e T\G are such that { r  e I1 d(sur, tur) < 61 
has relative measure at least 0 on I ,  then d(sur, tur) < e for all r el. 

Sketch of proof (cf. [ l a ,  Lemma 2-11 or Step 2  of the proof of [24, 
Lemma 3. I]). Since G is algebraic, any one-parameter algebraically uni- 
potent subgroup of G is an algebraic subgroup. So, for any x ,  y e G, the 
distance between the two points xur and yur is a polynomial function of r ,  
whose degree is bounded by some constant D  independent of x and y .  Be- 
cause the u-flow on G covers that on r \ G ,  this implies the distance be- 
tween the two points sur and tur on r \ G  is "locally" a polynomial. 1-e., 
there is some T > 0 such that if I. is an interval on the real line with d(sur, 
tur) < T for all r I ,  then d(sur, tur) is a polynomial function (of degree 5 
D )  when restricted to r Io. There is no loss in shrinking Tor e so that T = 
e. Given e ,  D ,  0, we can choose 6 > 0  such that iff is any polynomial of 
degree D  satisfying \ f (r ) \  < 6 for r [ O ,  W D ] ,  then 1 f (r)l < e/2 for r e 
[ - I ,  11. 

Let I. be a subinterval of I with d(sur, fur) < e for all r e Io. Supposing 
(for a contradiction) that d(sur, tur) is not bounded by e  on I ,  we may 
choose I. so that d(sur, tur) = e at one endpoint of To. Furthermore, we may 
assume the relative measure on I. of the set of r with d(sur, tur) < 6 is at 
least 0. Since d(sur, tur) is a polynomial of degree 5 D on Io, the set { r  e 
I 0  I d(sur, tur) < 6 1 has at most D  components. One of them (call it I Q )  has 
relative measure at least W D  on In. Since d(sur, tur) < 6 on IQ , the choice of 
6 then implies d(sur, tur) < e/2 on all of Io-contradicting the assumption 
that d(sur, tur) = e  at one endpoint. 

PROPOSITION 2.8. $ maps C G ( ~ ) O - ~ r b i t ~  into Cff(U)O-orbits (where 
CG(u)  is the centralizer of u in G). 

Sketch of proof (cf. [18, Lemma 3.21 or Step 2  of the proof of [24, 
Lemma 3.11). Let g be some small element of CG(u). For any s e T\G, 
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the orbits of s and sg are parallel and close together. If $ were uniformly 
continuous, it would follow immediately that the orbits of s$ and sg$ were 
close together forever-that they were parallel. This would mean sg$ = 

, s$gs for some small gs e CH(ii), as desired. 
The problem, of course, is that $ is not known a priori to be continu- 

ous. On the other hand, Lusin's Theorem asserts is uniformly continuous 
on a large subset of T\G. Therefore s$ spends, say, 99% of its life very 
close to sg$. Polynomial divergence of orbits (see 2.7) implies then that the 
two points are always close. 

COROLLARY 2.9. Suppose U is a closed unipotent subgroup of G 
containing u. I f  v is affine for U, then $ is affine for NG(U)O. 

Sketch of proof (see Section 5A). We wish to show $ is affine for any 
g e NG(U)O. To avoid having to consider commutators [ g ,  ur],  assume for 
simplicity that g e CG(u)O. For a.e. s e T\G, the proposition implies there 
is some gs CH(ii) with sg$ = s$gs. We wish to show gs is essentially 
independent of s .  Since u commutes with g and ii commutes with gs for all 
s e G, one can easily check that s$gs = s$gsu for all s e G. Since gs is 
actually unique, we conclude that gs = gs". Since u is ergodic, this implies 
gs is constant (independent of s )  as desired. 

COROLLARY 2.10. $ is affine for the identity component Po of a par- 
abolic subgroup of G. 

Proof. Let U be a maximal connected unipotent subgroup of G (and 
assume u e 17). Since U is nilpotent, if one starts with any subgroup of U, 
forms its normalizer in U, then forms the normalizer of this normalizer, 
and so on, one eventually reaches U itself. Hence repeated application of 
the previous corollary shows $ is affine for U. Then the preceding corollary 
asserts $ is affine for the identity component of P = NG(U). This is a para- 
bolic subgroup of G. 

PROPOSITION 2.11 (see Section 5B). We may assume V\G has no 
solvmanifold quotient. Furthermore, ifX is any connected subgroup of G 
which does not project to an Ad-precompact subgroup of G/rad G, then X 
is ergodic on T\G. 

Notation 2.12. Let S be some subgroup of G which is (locally) iso- 
morphic to SLz(R), and let Ul, A and Vl be the subgroups of S correspond- 
ing to the group of upper-triangular unipotent matrices, the group of diag- 
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onal matrices, and the group of unipotent lower triangular matrices in 
SL2(R). Assume Po contains Ul and A. 

PROPOSITION 2.13 (cf. [24, Lemma 5.51). The subgroups Vl as con- 
structed in 2.12, together with Po, suffice to generate G. W e  therefore 
need only show ^/ is affine for each such Vl. 

To get control on Vl, we use the commutation relations satisfied by A 
with regard to U, and Vl. To carry out the argument, we need exactly the 
same relations to hold in H as hold in G.  Thus we would like to show the 
homomorphism Po -+ H: g I+ g extends to an isomorphism of G with H,  
but we will settle for something slightly weaker. The key step in identifying 
G with H is showing that ^/ is (more-or-less) a one-to-one map. 

Remark 2.14. By modding out its kernel, we may assume the homo- 
morphism - : Po -+ H is one-to-one (see Lemma 5.11). 

LEMMA 2.15. Every fiber of y5 is finite (a. e. ). 

Sketch of proof (cf. [20, Lemma 3.11 or [24, Lemma 7-41). This is a 
consequence of Ratner's "H-property" (see [20, Definition 11 or [24, Theo- 
rem 6.1]), which is a manifestation of the fact that unipotent translations 
are "shearing" transformations. Consider two points s ,  t r \ G  that are 
close together and suppose their orbits under Ul are not parallel (i.e., there 
is no small c e CG(Ul) with s = tc) .  Then the two points wander apart. The 
shearing property means that s and t move apart much faster in the direc- 
tion of the CG(Ul)-orbits than in other directions. Therefore there is some c 
in the unit sphere of Co(Ul) such that s passes near tc as the points wander 
apart. Thus, letting ur (r e R) be a parametrization of U,, for some r we 
have sur = tcur. 

Now supposes and t belong to the same fiber of ^/ (and ^/ is uniformly 
continuous). Then sur^/ tcur^/ = t^/Er = sur^/E. This implies E has a 
fixed point, which contradicts the fact that we may assume no nonidentity 
element of c&) has a fixed point. We conclude that no two points in the 
same fiber of ^/ are close together. Consequently, the fibers of ^/ are finite, 
as desired. 

We use polynomial divergence to eliminate the hypothesis that 4 is 
uniformly continuous. Namely, polynomial divergence implies the points 
wander apart slowly, so not only does s pass near tc, but it spends a long 
time near tc. (Where "a long time" is proportional to the length of time 
required for s to approach tc.)  By the Pointwise Ergodic Theorem, then at 
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some time when s is close to tc,  both of these points are in the set of uni- 
form continuity for ^/. So the argument of the previous paragraph ap- 
plies. 

PROPOSITION 2.16. We may assume G = H,  and ^/: F\G -*Â A\G 
commutes with U. Furthermore, Se a -Z(G) for all a e A. 

Sketch of proof (see 5.12). For simplicity of exposition let us assume 
^/ is one-to-one (i.e., invertible) instead of just finite-to-one. (In the general 
case, $ l  is a joining with finite fibers over A\H.) Then by interchanging 
the roles of G and H in Corollary 2.10 we conclude that ̂ / I  is affine for the 
identity component of a parabolic subgroup Q of H. The image PÂ of Po 
contains QO, so it is the identity component of a parabolic subgroup of H. 
Thus we may assume Po = QO. And, Remark 2.14 shows we may assume 
the homomorphism ( - ) is one-to-one, i.e., it is an isomorphism of Po with 
QO. A bit of work (using Proposition 2.11) shows r a d ~  = rad H, and then 
Lie theory (Theorem 3.16) shows there is a (local) isomorphism a: G + H 
with a = - on U, andp e p a  . Z(H) for allp l Po. If we identify G with H 
under o, then the desired conclusions hold. 

LEMMA 2.17 ("Commutation relations," see Lemma 3.20). Let A^ 
C A be the subsemigroup of expanding automorphisms of Ul (so A+ con- 
tracts Vl, i.e., a l v a  + e as a + oo in A^). 

1. For s e F\G and v l Vl, we have d(sa, sva) -+ 0as a + in A+. 
2. Given any compact neighborhood Ue of e in Ul. For any suffi- 

ciently small v l Vl, there is a map U1 + Ul: u I-Ã  ̂ii such that 
vua * iia and vuC? = i iZ for all u e Uc and all a â‚¬A Furthermore, 
the derivative of the map u I+ ii is close to 1 for all u e Uc. 

3. There is a compact neighborhood Up~f e in V\ such that, i f  s ,  t e 
r \ G  satisfy sua = tua for all u e Uc and all a in some unbounded 
subset of A^, then there is some small c e Co(A) with s = tc. 

PROPOSITION 2.18. ^/ is affine for Vl. 

Sketch of proof (cf. [18, Lemma 3.41 or [24, Proposition 8.51). 
Given v e Vl. If ^/ were uniformly continuous, for all u l Ue and all a e A+ 
we would have: 

Tsv^/u~? = 1'svua$ (since ^/ commutes with U) 

Vsua^/ (by 2 and because ^/ is uniformly continuous) 
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= J?s$EZ (since il/ commutes with 17) 

I's$vuZ (by 2). 

By part 3 of the lemma, we conclude that mil/ = sij/ - vcs for some cs e 
c fl(A). Since d(sa, sva) -+ 0 as a --+ oo in A+, we have 

Therefore cs = e as desired. 
Unfortunately $ is not known to be uniformly continuous, but from 

Lusin's theorem and the Pointwise Ergodic Theorem, we conclude that 
Tsvil/uZ = Ts$vuZ for most u e Us,  for each fixed a e A^. By Lemma 2.7, it 
follows that the approximation indeed holds for all u e Ue. 

This completes the proof of the main theorem. 

3. Lie Theory. 

3A. Definitions. Save explicit mention to the contrary, all Lie 
groups and Lie algebras are real, separable, and finite-dimensional. 

Notation 3.1. For a closed subgroup X of a Lie group G, we use 
CG(X), NG(X), and XO, respectively, to denote the centralizer, normal- 
izer, and identity component (in the Hausdorff topology) of X. We use 
Z(G) to denote the center of G, i.e., Z(G) = Ca(G). We use a correspond- 
ing script letter @., (B, 6, . . . to denote the Lie algebra of a Lie group A, Â£ 
C, . . . . As is customary, we identify the Lie algebra of a subgroup of G 
with the corresponding subalgebra of g. 

Definition 3.2. Two Lie groups G and H are locally isomorphic if 
they have isomorphic Lie algebras or, equivalently, if the universal cover 
of Go is isomorphic to the universal cover of HO (cf. [23, Section 2.8, pp. 
72-74]). 

Definition 3.3. An element u of a Lie group G is unipotent if Adcu is 
a unipotent linear transformation on g. A subgroup U of G is unipotent if 
each element of U is unipotent. 

Caution 3.4. The theory of algebraic groups provides a notion of 
unipotence for elements of a real algebraic group. To avoid hopeless con- 
fusion with the preceding definition, we refer in this context to elements (or 
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subgroups) as being algebraically unipotent. (In a real algebraic group, 
every algebraically unipotent element is unipotent, but the converse fails if 
Z(G) is not algebraically unipotent.) 

Remark 3.5. Any unipotent subgroup of a connected Lie group G is 
nilpotent (cf. Engel's Theorem [ l l ,  Section V.2, pp. 63-67]). As a partial 
converse, any nilpotent normal subgroup of G is unipotent. 

Definition 3.6. For any Lie group G ,  we let rad G (the radical of G )  
be the largest connected solvable normal subgroup of G, and nil G (the 
nilradical of G )  be the largest connected nilpotent normal subgroup of G. 
Obviously nil G c rad G .  

Definition 3.7. A Lie algebra <Â is perfect if it coincides with its de- 
rived algebra, i.e., if Â = [Â£ Â£1 This is equivalent to the assertion that 2 
has no nonzero abelian (or solvable) homomorphic images. 

Definition 3.8. A Borel subalgebra of a complex Lie algebra 3C is a 
maximal solvable subalgebra, and any subalgebra containing a Borel sub- 
algebra is said to be parabolic. A subalgebra (P of a real Lie algebra Q is 
parabolic if its complexification (P Q C is parabolic in Q Q C. For a con- 
nected Lie group G ,  the normalizer NG((P) of any parabolic subalgebra of 
9 is said to be aparabolic subgroup of G .  

Definition 3.9. Suppose g is an element of a Lie group G .  Then 

{ x e G \ g n x g n  -> e asn -> +=) 

is a subgroup of G ,  called the horospherical subgroup associated to g .  

Remark 3.10. Any horospherical subgroup is unipotent. As a par- 
tial converse, any connected unipotent subgroup of a semisimple Lie group 
is contained in a horospherical subgroup. 

Definition 3.11. A real algebraic group is a Lie group which is a sub- 
group of finite index in the real points of an (affine) algebraic group de- 

' fined over R. A Lie group is locally algebraic if it is locally isomorphic to 
some real algebraic group. 

LEMMA 3.12. Any Lie group G whose radical is nilpotent is locally 
isomorphic to an essentially unique connected real algebraic group whose 
radical and center are algebraically unipotent. 
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Proof. The proof of [I1 , Theorem XVIII.l. 1, p. 2501 shows G is lo- 
cally isomorphic to a connected real algebraic group whose radical and 
center are algebraically unipotent. It follows from (the proof of) [ l l ,  Theo- 
rem XVIII.2.2, p. 2521 that a local isomorphism between any two such 
groups comes from an isomorphism of real algebraic groups. 

3B. Isomorphisms of parabolic subalgebras. An isomorphism of 
parabolic subalgebras may or may not extend to an isomorphism of the 
ambient Lie algebras. (Theorem 3.13(iii) shows that an extension, if it ex- 
ists, is unique.) The author has previously shown there is always an exten- 
sion if the ambient Lie algebras are semisimple (cf. 3.15). We now give a 
criterion (Corollary 3.17) for the existence of an extension, under the 
weaker assumption that the ambient Lie algebras have trivial center and 
that their radicals are nilpotent. 

THEOREM 3.13 (Bergman 121). I f  9 is a parabolic subalgebra of a 
real or complex Lie algebra Q, then: 

(i) For any finite-dimensional Q-module V, we have HO((P, V) = 
HO(Q, V). In particular, Z(@) = Z(Q); 

(ii) Suppose Vand Ware  finite-dimensional representations of Q. I f  
a :  V -> W is a @-module homomorphism, then a is Q-equiva- 
riant; and 

(iii) The inclusion of (P in Q is a category-theoretic epimorphism. In 
other words, i f  a, r :  Q -*Â 3C are Lie algebra homomorphisms 
with the same restriction to (P, i .e. ,  i f  alp = r\p,  then a = r.  

Proof. (i) We may assume Q is a complex Lie algebra and (9 is a 
Borel subalgebra. Letting Â be a Levi subalgebra of Q, note that (P 0 Â is 
a Borel subalgebra of Â£ Since HO((P, V) = HO((P fl Â£ HO(rad Q, V)) and 
HO(Q, V) = HO(Â£ HO(rad 8 ,  V)), we may assume Q = Â is semisimple. 
In this case, Weyl's Theorem asserts V is completely reducible, so we may 
assume V is irreducible. Let 3 be a Cartan subalgebra of Q contained in (P. 

Then the Borel subalgebra (P determines an ordering of the weights of 
S (w.r.t. 3). Letting X be the maximal weight of V, we have HO(nil (P, V) 
= Vx. If HO((P, V) # 0, we conclude that X = 0, and hence Vis the trivial 
Q-module. 

(ii) The vector space Hom(V, W )  of linear transformations V + W is 
a Q-module in the usual way. Since a is (P-equivariant, we have a e HO((P, 
Hom(V, W)) .  Hence (i) implies a ?HÂ¡(Q Hom(V, W ) )  as desired. 

(iii) Let V be a faithful finite-dimensional representation of 3C. Our 



ZERO-ENTROPY AFFINE MAPS 939 

two homomorphisms of 9 into 3C give us two ways to view Vas a 9-module. 
By assumption, the identity map on V is an isomorphism of these as (P- 

modules. Hence (ii) implies the identity map is Q-equivariant. Since V is a 
faithful 3C-module, it follows that a = T .  0 

LEMMA 3.14 (Wallach). I f  (B is a parabolic subalgebra of a real or 
complex semisimple Lie algebra Â£1 and i f  V is a finite-dimensional Â£1 
module with no trivial submodules, then H1((B, V) = 0. 

Proof. Weyl's Theorem asserts that any Â£1-modul is completely re- 
ducible, so we may assume V is irreducible. Now apply the Hochschild- 
Serre spectral sequence [lo, Exercise VIII.9.3, p. 3051 to the Langlands 
decomposition 63 = SK + 91 of 63 (where 91 = nil (B) to determine H \ ( B ,  

V). There are two relevant groups in the E-, term: EY = HO(SK, H1(91, 
V)) and E $ ~ ~  = H1(STC, H0(91, V)). It  suffices to show both of these groups 
vanish, for then the spectral sequence immediately yields H1((B, V) = 0. 

The 311-module structure of H1(91, V) is known [13, Theorem 5.141. 
In particular, the highest weight a of any irreducible SK-submodule of 
H1(91, V) is of the form a = (X + 5)wp - 5, where 5 is one-half the sum of 
the positive roots, X is the highest weight of V, and w p  is the reflection 
corresponding to a simple root 0. It  follows from this that 0 is not the high- 
est weight of any STC-submodule. In other words, H0(311, H1(91, V)) = 0, 
as desired. 

The reductive algebra 311 is a direct sum SK = S @ ft of a semisimple 
and an abelian Lie algebra. The Hochschild-Serre spectral sequence can 
be applied to this decomposition to show H1(STC, HO(ffl, V)) = 0. There 
are two relevant groups in the EJ term: 

EY = HO(ft, H1(S, H0(91, V))) and E$O = H1(ft, HO(S, H0(91, V))). 

Since Whitehead's Lemma asserts H1(S, .) = 0, only the latter of these 
two groups matters. Note that HO(S, H0(91, V)) = HO(S + 91, V). 

Lemma 3.13(i) implies HO((B, V) = 0, so HO(S + 91, V) has no triv- 
ial ft-submodules. Since f t  G 9TI is reductive in Â£1 this implies HO(S + 91, 
V) is a direct sum of nontrivial irreducible @.-modules. Since ft is abelian, 
it is then easy to see H1(ft, HO(S + 91, V)) = 0. 0 

LEMMA 3.15 124, Proposition 5.7 and Lemma 5.81. Suppose Q and 
3C are semisimple real or complex Lie algebras. Let (P and Q be parabolic 
subalgebras of 9 and 3C respectively, and let a :  (P + Q be a Lie algebra 
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isomorphism. Then u extends to an isomorphism of Lie algebras 
Q 32. 

THEOREM 3.16. Let (P and Q be parabolic subalgebras of real or 
complex Lie algebras Q and 3C respectively, and assume rad S is nilpotent. 
I f  a: (P -+ Q, is a Lie algebra isomorphism such that (rad Q)a = rad 3C, 
then there is an isomorphism T :  Q -+ 3C, such that T and a agree on rad Q 
+ 19, (PI, and p v  e p u  + Z(3C) for each p E 6'. 

Proof. Let Â be a Levi subalgebra of S, and set 63 = Â 0 (P, a 
parabolic subalgebra of Â£ 

Step 1. If rad 3C is abelian, then there is a Levi subalgebra 911 of 3C 
with (Bu c 9H + CradX(911). 

Proof. Let 9H be a Levi subalgebra of 3C, and let (S,' = 9TZ 0 Q. 
There is no loss in assuming Cradx(911) = 0. (Because rad 3C is abelian, 
CradX(911) = Z(3C) is an ideal, so it may be modded out. Because all 911- 
modules are completely reducible, then 911 has no centralizer in the quo- 
tient.) I.e., the 911-module rad 3C has no trivial submodules. Hence 
Lemma 3.14 asserts H1((B ' , W )  = 0 for every SITt-submodule W of rad 3C, 
so the usual argument that Levi subalgebras are conjugate shows any two 
subalgebras complementary to rad 3C in Q are conjugate (cf. proof of 123, 
Theorem 3.14.2, p. 2271). In particular, (So is conjugate to (B ' . Replacing 
9TZ by a conjugate if necessary, then we may assume (Bu = (B ' is contained 
in 911. Thus the desired conclusion holds. 

Step 2. In any case, there is a Levi subalgebra 911 of 3C with (Bu C 
9TZ + c r a d m -  

Proof. By Step 1 (applied to Q/[rad Q, rad Q] and 3C/[rad 3C, rad 
XI), there is a Levi subalgebra 911 of 3C with (Bu C 911 + Cradx(911) + [rad 
3C, rad 3C] = 3Co. We may assume Cradx(911) < rad 3C (or else the desired 
conclusion is obvious). Since rad 3C is nilpotent, this implies CradX(911) + 
[rad 3C, rad 3C] < rad 3C (cf. 19, Corollary 10.33, p. 1551). Hence 3Co is a 
proper subalgebra of 3C. By induction on the dimension of 32, we conclude 
there is a Levi subalgebra 911 ' of 3Co with (Bu C 911 ' + CradXO(911 ' ). Note 
that 911' is a Levi subalgebra of 3C, and rad 3Co = rad X. D 3Co is con- 
tained in rad 3C. 

Step 3. There is a Levi subalgebra 9TZ of 3C with (Bu C 9H + Z(3C). 

Proof. Let 911 be as given by Step 2 and set (B ' = 911 fl Q. Then (Bu 
is the graph of a homomorphism T: 63' -+ Crad3c(9^). We need only show 
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(B'r C Z(3C). Because we already know (BT c CradX(911), it is enough to 
show (B'r c Z(rad 3C). Now rad 3C is nilpotent, so (B'/ker r is nilpotent. 
Because (B' is a parabolic subalgebra of a semisimple Lie algebra, its 
structure is such that this implies [(B', (B'] C ker r. So, letting 3 be a 
torus in (B complementary to [(B, 631, we need only show 30 c (B' + 
Z(rad 32). Any element t of 3 is ad-semisimple, so ad(ta) must be ad-semi- 
simple on rad 32. Write to = t '  + t ' r  (with t '  e (B '). Then ad(ta) = 
ad t ' + ad(t 'r)  is the Jordan decomposition of ad(to), because t ' is ad- 
semisimple, t ' r  e rad 3C is ad-nilpotent, and [t ', t 'r] = 0. Since ad(ta) is 
semisimple on rad 3C, this implies ad(t'r) is 0 on rad 3C. I.e., t ' r  e Z(rad 
3C) as desired. 

Step 4. Conclusion. 

Proof. Let 911 be as given by Step 3, and let 63' = 911 ("I Q. Then 
(Bu C (B ' + Z(3C), indeed there is an isomorphism a' : (B Q (B ' with ba e 
ba' + Z(3C) for all b e (B. (Note for future reference that a and a' agree on 
[(B, 631.) Now Lemma 3.15 implies a '  extends to an isomorphism at :  
Â Q 9TL Identify Â with 911 under ai, so the restriction of a to rad fi is (B- 

equivariant. Then Theorem 3.13(ii) asserts it is ifi-equivariant. Therefore 
the linear map 

is a Lie algebra isomorphism. It obviously agrees with a on rad fl, and, 
because a and a, agree on [(B, (B], it also agrees with a on [(B, (B]. Thus T 

agrees with a on rad fl + [(B, (B] = rad fi + [(P, (PI. 

COROLLARY 3.17. Suppose (P and Q are parabolic subalgebras of 
real or complex Lie algebras fl and 3C respectively. IfZ(3C) = 0 and rad 3C 
is nilpotent, then any isomorphism a :  (P -+ Q with (rad Q)a = rad 3C 
extends to a Lie algebra isomorphism v fl Q 3C. 

Remark 3.18. The assumption that (rad Q)a = rad 3C cannot be 
omitted. For example, if (P is a proper parabolic subalgebra of any Lie 

. algebra 32, the isomorphism (P = (P obviously does not extend to an iso- 
morphism of (P with 3C. 

3C. Miscellaneous technical results 

LEMMA 3.19. Let M be any finite-dimensional real or complex S- 
module, where S is a connected Lie group locally isomorphic to SL2(R). Let 
A be a split Cartan subgroup of S,  and choose a maximal unipotent sub- 
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group U of S normalized by A. The selection of U corresponds to an order- 
ing of the weights of S (w.r.t. A), and this determines a decomposition 
M = M- @ M O  @ M+ of M into the direct sum of its negative, zero, and 
positive weight spaces. Then: 

(a) Cu(U) G M O  + M+; 
(b) Any U-submodule of M contained in M + M O  is contained in 

Cu(S) G MO. 

Proof. Weyl's Theorem asserts M is completely reducible, so, by 
projecting to irreducible summands, we may assume M is irreducible. Any 
nonzero vector centralized by U is a maximal vector (cf. [12, Section 20.2, 
p. 1081). Since the highest weight of M is nonnegative, this proves (a). 

Any U-submodule contains a maximal vector of M. If the submodule 
is contained in M + MO, this implies the highest weight of M is 0. Be- 
cause an irreducible S-module is determined by its highest weight, we con- 
clude that M is trivial, and (b) follows. 

LEMMA 3.20. Let F be a lattice in a Lie group G. Let Ul and Vl be 
one-parameter unipotent subgroups of G such that S = ( Ul, Vl ) is locally 
isomorphic to SLz(R). Let A = (Ns(Ul) Fl Ns(V1))O, and let A+ C A be 
the subsemigroup of expanding automorphisms of Ul (so A +  contracts Vl, 
i.e., a l v a  + e as a + <x> in A+). 

1. For s e F\G and v e V,, we have d(sa, sva) + 0 as a + a in A+.  
2. Let U. be any compact neighborhood of e in Ul. For any suffi- 

ciently small v e Vi, there is a map Ul -+ Ul : u I+ ii such that vua 
iia for all u e Uc and all a e A+.  Furthermore, the derivative of 

the map u I+ ii is close to 1 for all u e U.. 
3. There is a compact neighborhood Ue of e in Ul such that, i f  s ,  t e 

r \G satisfy sua 5 tua for all u e Uc and all a in some unbounded 
subset of A+, then there is some small c 6 Co(A) with s = tc. 

Proof. (1) is a consequence of the fact that A+ contracts Vl. For (2), 
see [24, p. 201. We now prove (3) (cf. Step 2 of the proof of [24, Lemma 
7.81). 

The Lie algebra Q is an S-module, and thus Q splits into a direct sum 
8 @ So @ Q+ of negative, zero, and positive weight spaces as in Lemma 
3.19. Let (S-, (So, be compact convex neighborhoods of 0 in Q-, QO, 
Q+, respectively. For each a in some unbounded subset [A+] of A+,  there 
is someye e G with t = sya and ( ~ a ) " ~ y ~ u a  Exp((S- + (So + a+) for all 
u U.. 
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We may assume the neighborhoods are small enough that Exp is one- 
to-one on (B- + (BO + (&+. Thus there is a unique ja e (B- + (BO + (B+ 

with Exp(ja) = ya, and 

Therefore ja.(Adu)v e (BO + (B+, where v is projection onto So + Q+. 
Since Cc(u) G Q0 + Q+ (see Lemma 3.19(a)), the projection into Cc,(u) is 
even smaller. We conclude from [24, Lemma 6.21 that if Ue is large 
enough, then u l y a u  5 e for u e Ue. 

Letting u = e ,  in particular we have ya 5 e for all a e [A+]. Because 
y = xya and no small element of G has a fixed point nears [6, Lemma 2.11, 
this implies ya = x is independent of a.  Thus j.(Adu) e [(B- + (BO 4- a+]. 
( A d a 1 )  for all u e Ue and all a e [A+]. Letting a -+ oo, we get j.(Adu) e 
Q- + (BO for all u e Uc. Hence j.(Adu) Q- + Q0 for all u e Ul (since Ue is 
Zariski dense in (A). By the structure of SL2(R)-modules (see Lemma 
3.19(b)), this implies j e So. Therefore x = Exp(j) e CG(A)O. 

LEMMA 3.21. For any Lie algebra $3, we have Cg(rad Q) c Z(8) + 
[Q, 81. 

Proof. Let Â be a Levi subalgebra of G. Since Â is semisimple, 
Weyl's Theorem asserts every ,Â£-modul is completely reducible. Hence we 
may write Cg(rad 8 )  = Z @ V, where Z = Z(Q) is the centralizer of Â in 
Cc(rad Q), and V is a sum of nontrivial irreducible Â£-modules so V = 

VI '= IS, 81. 0 

LEMMA 3.22. Ifs' is a parabolic subalgebra of a real or complex Lie 
algebra Q, then [Q, Q] 0 Z(Q) = [(P, (PI fl Z((P). 

Proof. Let fi = 8/[rad Q, rad Q]. Then rad fi is abelian, so [g, fi] 
- - 

= [Q, Â£ for any Levi subalagebra 3 of fi. Since [fi, Â£ is the sum of the 
nontrivial irreducible 2-submodules of G, then 2 has trivial centralizer in - - - - 
[Q, Q]. Therefore [g, g ]  n ~ ( f i )  = 0, which implies [Q, Q] n Z(Q) c 
[rad 8 ,  rad g] .  

LEMMA 3.23. Let K be a closed subgroup of a connected real Lie 
group G whose radical is nilpotent. Assume there is a closed normal sub- 
group N of G contained in K such that K projects to an Ad-precompact 
subgroup of G/N, and that K is normalized by the identity component Po 
of a parabolic subgroup of G. Then K is a normal subgroup of G. 
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Proof. Passing to a quotient of G, we may assume K contains no 
normal subgroup of G. This implies K fl Z(G) = e ,  and K is Ad-precom- 
pact. Since AdG(K) (resp. Adc(rad G)) consists only of semisimple (resp. 
unipotent) elements, we have K fl rad G = e .  Since K and rad G normal- 
ize each other, this implies [K, rad G] = e .  

Case 1. G is semisimple with trivial center. Note that G is (isomor- 
phic to) a real algebraic group [25, Proposition 3.1.6, p. 351. Since Z(G) = 
e and K is a closed Ad-precompact subgroup, K is compact, and hence K 
is an algebraic subgroup of G (cf. 125, p. 401). Thus K is a reductive alge- 
braic subgroup of G. This means there is a Cartan involution (*) of G with 
K* = K [17, Section 2.6, p. 111. Then NG(K) = No(K)*. Since Po G 

Nc(K), then NG(K) 3 < P o ,  (Po)*) = G. 

Case 2. K is connected. We wish to show [ Q ,  3C] c 3C. Since 3C 
is reductive in Q and [3C, rad 91 = 0, it suffices to show [9,  3C] !Z 3C + 
rad 9. Thus there is no loss in passing to the maximal semisimple quotient 
of G with trivial center. Then Case 1 applies. 

Case 3.  The general case. Case 2 implies KO is normal in G, which 
implies K is discrete. Hence, showing K is normal is equivalent to showing 
K is central in G. We already know K centralizes rad 9. Since K is reduc- 
tive, then we need only show K centralizes Q/rad Q. Thus we may assume 
G is semisimple (with trivial center), and Case 1 applies. 

LEMMA 3.24. Any faithful lattice I' in a connectedLiegroup G has a 
torsion-free subgroup of finite index. 

Proof. F is finitely generated [17, Remark 6.18, pp. 99-1001, so 
AdGI' is a finitely generated subgroup of the linear group AdG, and hence 
AdGr has a torsion-free subgroup of finite index 117, Theorem 6.11, 
p. 931. Since I' is faithful, we have F Z AdGI'. 

4. Finite-volume homogeneous spaces. This section presents a 
number of technical results which generalize the structure theorems 
proved by Auslander [I] and others for finite-volume homogeneous spaces 
of solvable groups. They are more-or-less known, but not in the generality 
required in this paper. Our development closely follows the presentation of 
Brezin and Moore [4]. 

Theorem 4.12 is perhaps the only new result of independent interest. 
Roughly speaking, this theorem (which generalizes a fundamental theo- 
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rem of Auslander, see 4.11) shows any finite-volume homogeneous space 
decomposes into a solvable and a semisimple part. 

Added in proof. This result is not new: see [Ta-Sun Wu, Products of 
subgroups in Lie groups, Illinois J. Math. 29 (1985) 687-6951. 

4A. Dani's generalization of the Borel Density Theorem. The Borel 
Density Theorem [17, Theorem 5.26(vi), pp. 87-88] asserts that if T is a 
lattice in connected semisimple real algebraic group with no compact fac- 
tors, then r is Zariski dense in G. We adopt the following result of S. G. 
Dani as an analogue of this theorem which is valid for arbitrary groups G. 

THEOREM 4.1 (Dani [8, Corollary 2.61). Suppose Y* is an algebraic 
subgroup of a real algebraic group G*, and let v be a finite measure on 
F*\G*. Set 

G,? = { g  e G* \ the g-action on T* \G* preserves v } 

and 

Then G,* and N,? are algebraic subgroups of G*, and Nf is a cocompact 
normal subgroup of G,?. 0 

COROLLARY 4.2. Suppose T\G is a finite-volume homogeneous 
space of a Lie group G, and a:  G -Ã GLn(R) is a finite-dimensional repre- 
sentation of G. Let G* and T* be the Zariski closures of Go and To, respec- 
tively, in GLn(R). Then T*\G* has finite volume. Hence Y* contains a 
cocompact normal algebraic subgroup of G*. In particular, T* contains 
every algebraically unipotent element of G*. 

Proof. The G-invariant probability measure p on T\G pushes to a 
Go-invariant measure v = pa* on T*\G*. Since Go is Zariski dense, and 
because G,? is algebraic, we must have G,? = G*. Hence v is a finite G*- 
invariant measure on T* \G*. 

The support of the G*-invariant probability measure v is obviously all 
of T*\G*; hence N,? T*. Any compact real algebraic group (e.g., 
N$\G,?) has no algebraically unipotent elements. Since G,? = G*, this im- 
plies N,? contains every algebraically unipotent element of G*. 
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COROLLARY 4.3. Suppose F\G is a finite-volume homogene~us 
space of a Lie group G. Then every unipotent element of G normalizes 
(resp. centralizes) eve y connected Lie subgroup of G normalized (resp. 
centralized) by F. In particular, nil G G NG(TO). 

COROLLARY 4.4. Let F\G be a finite-volume homogeneous space of 
a connected Lie group G, and assume F projects densely into the maximal 
compact semisimple factor of G. IfH is a real algebraicgroup, and a: G + 

His  a continuous homomorphism, then the Zariski closure F* of To con- 
tains every Levi subgroup of the Zariski closure G* of Go in H. 

COROLLARY 4.5. Suppose F\G is a finite-volume homogeneous 
space of a connected Lie group G, and assume I? projects densely into the 
maximal compact semisimple factor of G. Then any closed connected sub- 
group of G normalized (resp. centralized) by both F and rad G is normal 
(resp. central) in G. 

COROLLARY 4.6. Suppose T\G is a finite-volume homogeneous 
space of a connected Lie group G whose radical is nilpotent, and assume F 
projects densely into the maximal compact semisimple factor of G. Then 
any closed connected subgroup of G normalized (resp. centralized) by F is 
normal (resp. central) in G. I f  F is discrete, this implies F - Z(G) is closed 
in G. 

4B. The Bieberbach-Auslander Theorem revisited. 

Definition 4.7. Suppose F\G is a finite-volume homogeneous space 
of a Lie group G, and let N be a closed normal subgroup of G. We say I' (or 
F \G) is compatible with N if FN is closed in G (and hence (F 0 N)\N is a 
finite-volume homogeneous space). 

Definition 4.8. A finite-volume homogeneous space F\G of a Lie 
group G is strongly rad-compatible if 

(1) F is compatible with both rad G and nil G; 
(2) F0 c nil G; and 
(3) (F f l  rad G)\rad G is locally faithful. 

Definition 4.9. A finite-volume homogeneous space F\G is weakly 
rad-compatible if there is some connected closed solvable subgroup A of 
G, containing rad G and normalized by F, such that FA is closed. This 
notion is due to Dani 17, Proposition 1.21 and Brezin and Moore [4, Sec- 
tion 41. They use the term admissible instead of weakly rad-compatible. 
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LEMMA 4.10. Suppose F \G is a finite-volume homogeneous space of 
a Lie group G, and N is a closed normal subgroup of G contained in F. I f  
the homogeneous space (T/N)\(G/N) is weakly rad-compatible, then T\G 
is weakly rad-compatible. 

Proof. There is a connected closed solvable subgroup AJN of GIN, 
containing rad(G/N) and normalized by FIN, such that FA, is closed in 
G. Since A \ /N  is solvable, we have Al  = N rad Ai ,  and hence F rad A1 = 
FA, is closed in G. Setting A = rad Al ,  we see that F\G is weakly rad- 
compatible. 0 

THEOREM 4.11 (Auslander [17, Theorem 8.2.4, p. 1491). I f  F is a 
lattice in a Lie group G, then I' is weakly rad-compatible. 

THEOREM 4.12. Every finite-volume homogeneous space T \G of 
any Lie group G is weakly rad-compatible. 

Proof. We may assume r \ G  is faithful (see Lemma 4.10). Since 
F/TO is discrete, Auslander's theorem 4.11 (together with Lemma 4.10) 
asserts F WG(rO)  is weakly rad-compatible, so there is a connected closed 
solvable subgroup N of NG(FO), containing rad NG(FO) and normalized by 
r, such that FN is closed. 

Consider first the case where N G F. Then rad NG(FO) G l'. Since 
Corollary 4.3 asserts nil G G No(FO), and because F\G is faithful, we 
conclude nil G = e .  Hence rad G = e .  So T\G is weakly rad-compatible 
(let A = e ) .  

We may now assume N Â F. Then dim(FN)O > dim F0 so, by induc- 
tion on dim F\G, we may assume (I'N)\G is weakly rad-compatible. 
Hence there is a connected closed solvable subgroup Ai of G, containing 
rad G and normalized by FN, such that FNAl is closed. Since N normal- 
izes Al ,  and each of N and A,  is a solvable subgroup normalized by r, the 
product NA1 is solvable and normalized by T. Setting A = NAl, we easily 
deduce that l'\G is weakly rad-compatible. 

By entirely different methods, R. J. Zimmer [26] has independently 
proved a generalization of Theorem 4.12. As a corollary of his work it fol- 
lows that every homogeneous space F \G (not necessarily of finite volume) 
is weakly rad-compatible. 

COROLLARY 4.13. Suppose F\G is a locally faithful finite-volume 
homogeneous space of a Lie group G. I f  I' fl Go projects densely into the 
maximal compact semisimple factor of Go, and if rGO = G, then F \G is 
strongly rad-compatible. 
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Proof. A fundamental theorem of Mostow (cf. [17, Theorem 3.3, 
p. 461) asserts that any locally faithful finite-volume homogeneous space of 
a connected solvable Lie group is strongly rad-compatible, so we need only 
show: (1) F is compatible with rad G; (2) F0 S rad G ;  and (3) (I' ft 
rad G)\rad G is locally faithful. 

Step 1. F is compatible with rad G. Theorem 4.12 shows F is weakly 
rad-compatible, so we may let A be a closed solvable subgroup of G nor- 
malized by F and containing rad G, such that FA is closed. Since A is 
normalized by both F and rad G, it follows from Corollary 4.5 that A is 
normal in G. Hence A = rad G, so F is rad-compatible. 

Step 2. Yo G rad G (cf. 14, Theorem 4.61). Corollary 4.5 implies F0 
rad G 0 G. If r0 Â rad G, it follows that F0 contains some normal sub- 
group Ll of a Levi subgroup of G. The Zariski closure G* of AdG in 
Aut (g) has a Malcev decomposition G* = (L * X T*) IX U*, where L * is a 
Levi subgroup of G*, T* is a torus (reductive in G*), and U* is the unipo- 
tent radical. Now T* centralizes Ll, and Dani's Theorem 4.1 implies L*U* 
normalizes FO. So 

This contradicts the fact that Y\G is locally faithful. 

Step 3. (I' ft rad G)\rad G is locally faithful. Let us pretend there is 
a nontrivial connected normal subgroup N of rad G contained in FO. The 
normal closure Nr of N in I' is a connected subgroup of F normalized by 
both F and rad G. We conclude from Collary 4.5 that Nr U G. This con- 
tradicts the fact that F\G is locally faithful. 

4C. The structure of unipotent translations. 

Standing assumptions (4.14). Throughout Section 4C, g is an er- 
godic translation on a locally faithful finite-volume homogeneous space 
F\G of a Lie group G. We assume G = YGO = GO<g).  

Remark 4.15. The assumption that FGO = G is equivalent to re- 
quiring that I' \G be connected. If Go < g )  were a proper subgroup of G, 
one could replace G with this subgroup, so there is no serious loss in as- 
suming GO<g> = G. 

Remark 4.16. We allow G to be disconnected because this provides 
an easy way to treat affine maps. Namely, suppose T\G is a connected 
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homogeneous space, and let A = Aff(F\G) be the group of volume- 
preserving invertible affine maps on T\G. Then A is transitive on F\G 
(because G C A) so the action of an affine map To,, on I? \G is equivalent 
to the action of Togo by translation on Stab* (F)\A . 

Notation (4.17) (cf. [4, Section 21). If the Zariski closure G* of AdG 
in Aut(fi) is connected, then it has a Malcev decomposition G* = (L* X 
T*) IX U*, where L* is a Levi subgroup of G*, T* is a torus (reductive in 
G*), and U* is the unipotent radical. Let T: G -*Â T* be the map obtained 
by composing Ad with the projection of G* onto T*. [We implicitly assume 
throughout Section 4C that G* is Zariski connected. As it requires no 
greater cost than passing to a subgroup of finite index in G, this assump- 
tion is essentially harmless.] 

LEMMA 4.18. Let B and T be subgroups of a compact semisimple 
Lie group K, and assume B T  contains a dense subgroup of KO. I f  T is 
abelian, then B contains a dense subgroup of KO. 

Proof. We may assume B and T are closed (hence compact) and 
TB = K. Then TO/(TO 0 B )  is homeomorphic to (KO Fl B)\KO. Because 
the former is a torus and the latter has a finite fundamental group, we 
conclude that (KO 0 B)\KO is a point, i.e., KO C B. 

PROPOSITION 4.19 (cf. [4, Theorem 5.51). I' 0 Go projects densely 
into the maximal compact semisimple factor of Go. Hence T is strongly 
rad-compatible. 

Proof. Replacing g by a conjugate if necessary, we may assume 
T< g ) is dense in G. Then T< g ) projects densely into the maximal compact 
semisimple factor K *  of G*. Since < g ) *  is abelian, we conclude from 
Lemma 4.18 that (K*)O c T*. Since (T 0 GO)\F is cyclic (hence abelian), 
Lemma 4.18 asserts that (I' 0 Go)* contains (K*)' as desired. Corollary 
4.13 shows the second conclusion follows from the first. 

PROPOSITION 4.20. Tv is discrete (and hence closed) in T*. 

Proof (adapted from the proof of 14, Theorem 2.11). Replace F by a 
subgroup of finite index (if necessary) so that F* is connected. Because 
Corollaries 4.2 and 4.4 imply r *  contains U* and L*, we may write F* = 
(L* X S*) IX U*, where S *  = F* 0 T*. Let 91 and 3D be the Lie algebras 
of nil G and To. By 14, Lemma 2.21, we know S* is faithful on % / a .  

Let j be the natural homomorphism of T* into Aut(X/SD). Now Fj  
normalizes the discrete cocompact subgroup (T 0 nil G)/TO of (nil G)/TO, 
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so it preserves the associated lattice in 91/53 provided by the Malcev theo- 
rem [17, p. 341. Hence I'*j is an algebraic group defined over the rational 
numbers, and with an appropriate choice of the torus S*, the projection 
v '  : T*j + S*j is also defined over Q.  Furthermore, T is contained in the 
group of integer points of r*j .  So I'*jv' is contained in an arithmetic sub- 
group of S*j [3, Corollary 7.13(3)]. Hence it is discrete. 

COROLLARY 4.21 (cf. [4, Corollary 2.31). Gv is closed in T*. 

Proof. Since any Levi subgroup of Go is in the kernel of T and 
TGO = G, we have Gv = (I' - rad G)v. As Tv is discrete, and I' fl rad G is 
cocompact in rad G (see (4.19)), we conclude that Gv is closed. 

PROPOSITION 4.22. If [G, G] - I' is dense in G, then rad G is nilpo- 
tent and G = [G, GI - Z(G). 

Proof. Proposition 4.20 asserts Tj is discrete in T*. On the other 
hand, since [G, GI L ker j ,  it follows that Tj is dense in Gj, which is con- 
nected. We conclude that T* = e ,  so rad G is nilpotent (hence G is locally 
algebraic and I' is discrete). 

Let j be the natural homomorphism G + Aut(X), where 91 is the Lie 
algebra of nil G. Because G is locally algebraic, Gj is Zariski closed in 
Aut(9l). As in the proof of Proposition 4.20, we see that Tj is contained in 
an arithmetic subgroup of Gj, and hence I'j is an arithmetic lattice in Gj. 
Hence Tj fl [Gj, Gj] is a lattice in [Gj, Gj], and therefore ([G, GI * T))' is 
closed in GLJR). Since [G, GI - I' is dense in G ,  this implies ([G, GI - T)j 
= Gj, so CG(nil G)  . [G, GI . F = G because ker j = CG(nil G). As G is 
connected, we must have CG(nil G)O - [G, GI = G. Lemma 3.21 shows 
CG(rad G) G Z(G) [G, GI. Since rad G = nil G, we conclude Z(G) - 
[G, GI = G as desired. 

PROPOSITION 4.23. Ifg is unipotent, then T* = e. Hence rad G = 
nil G (so G is locally algebraic), I' is discrete, and I' is compatible with 
Z(G). 

Proof (cf. [4, Corollary 2.5, p. 5781). Replacing the ergodic unipo- 
tent translation g by a conjugate if necessary, we may assume F ( g )  is 
dense in G. Since g E ker IT, this implies I'v is dense in Gv. But Gv = 
(GOv)((g)v) = GOv e is connected, whereas Tv is discrete (see 4.20), so 
we must have Gv = Tv = e. Since Gv is Zariski dense in T*, this implies 
T* = e. 

Now T* = e ,  so rad G* is nilpotent. Since (rad G)* G rad G*, we 
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conclude that rad G is nilpotent. It  follows from Corollary 4.6 that T o  0 
G. Since T\G is locally faithful, this means To  = e ,  i.e., I? is discrete. 
Hence Corollary 4.6 implies T is compatible with Z(G). 

4D. The Mautner phenomenon. 

THEOREM 4.24 ("The Mautner phenomenon" [14, Theorem 1.1, 
p. 1561). Let T be a lattice in a connected Liegroup G. For any connected 
subgroup M of G ,  let N be the smallest connected normal subgroup of G 
such that M projects to an Ad-precompact subgroup of G/N.  Then any 
M-invariant measurable function on T \G is N-invariant. 

LEMMA 4.25. Let T be a lattice in a connected Lie group G whose 
radical is nilpotent, and assume T projects densely into the maximal com- 
pact semisimple factor of G. Suppose $ is a measurable function on T\G 
which is N-invariant, for some normal subgroup N of G. Then there is a 
normal subgroup N1 of G containing N ,  such that $ is Nl-invariant, and 
NIT is closed in G. 

Proof. Let No be the identity component of the closure of NT.  Since 
No is a connected subgroup of G normalized by F ,  Corollary 4.6 implies No 
is normal in G. Now $ corresponds to a function \1/' on G which is (essen- 
tially) left-invariant under N T ,  so $' is left-invariant under No. Because 
No is normal, then $' is also right-invariant under No, so $ is No-invariant. 
Set N ,  = NNo. 

COROLLARY 4.26. Suppose T is a lattice in a connected Lie group G 
whose radical is nilpotent, and assume T projects densely into the maximal 
compact semisimple factor of G. For V a  connected unipotent subgroup of 
G ,  let N be the smallest closed normal subgroup of G containing V and 
such that NT is closed. Then the N-orbits are the ergodic components of 
the action of V by translation on F \G. 

Proof. Since T\G/N is countably separated, it suffices to show any 
V-invariant measurable function on T\G is (essentially) N-invariant. To 
this end, let f be a V-invariant measurable function. The Mautner Phe- 
nomenon (4.24) implies f is essentially No-invariant, where No is the small- 
est normal subgroup of G such that V projects to an Ad-precompact sub- 
group of G/No. Since V is unipotent, this implies V projects to a central 
subgroup of G/No, and hence VNo is normal in G. Since VNo stabilizes f ,  
Lemma 4.25 asserts N stabilizes f .  
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COROLLARY 4.27 ("Moore Ergodicity Theorem," cf. 125, Theorem 
2.2.6, p. 191). Suppose F is an irreducible lattice in a connected semisim- 
ple Lie group G. &X is a connected subgroup of G, then either X is Ad- 
precompact, or X is ergodic on F\G. 

COROLLARY 4.28 (cf. [4, Theorem 6.1, p. 6011). Suppose F is a lat- 
tice in a connected Lie group G. &X is a connected subgroup of G which is 
ergodic on both the maximal solvmanifold quotient and the maximal semi- 
simple quotient of F\G, then Xis ergodic on I'\G. 

5. Details to fill in the outline of the proof. 

Remark 5.1. Suppose u is a unipotent element of a locally algebraic 
group G. Any algebraically unipotent element of the Zariski closure G* of 
AdG in GL(G) lies in a unique one-parameter algebraically unipotent sub- 
group, so there is a one-parameter unipotent subgroup vr (r E R) of G* 
such that v1 = Adu. If Go is simply connected, then for y, c E Go and r E 

R, the expression v-yvr[vr, c] E Go is well-defined. Thus, given x, y E Go, 
even though u itself may not lie in a one-parameter subgroup, there is no 
ambiguity when we write an expression such as d(xur, yur[ur, c]), for r E R. 
(Where d is a left-invariant metric on G, cf. [24, Notation 2.101.) 

Notation. Let AffG($) = {g  E G: $ is affine for g }. 

SA. Mine for the normalizer. For technical reasons it is easier to 
prove a strengthened form of Corollary 2.9. 

Definition 5.2, Given an element x and a subgroup Y of a Lie group 
G. For 6 > 0. we set 

CG(x, E 6) = {c E G ld(e, c) < 6, [xn, c] E Y for all n E Z}. 

The descending chain condition on connected Lie subgroups of G implies 
there is some 60 > 0 such that ( CG(x, E 6)) O = ( CG(x, C 60)) O whenever 
0 < 6 5 60. We set CG(x, Y) = (CG(x, Y, a0)) O, and call this the central- 
izer of x relative to Y in G. This terminology is motivated by the fact that if 
Y is normal in G (and connected), then CG(x, Y)/Y is the identity compo- 
nent of the centralizer of xY in G/Y. 

PROPOSITION 5.3 ("Affine for the Relative Centralizer"). Suppose F 
(resp. A) is a lattice in a connected real Lie group G (resp. H )  whose radi- 
cal is nilpotent. Let u be an ergodic unQotent element of G and assume $ 
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is affine for u via a unipotent element f i  of H. v U is any connected unipo- 
tent subgroup of G contained in AHG($), then $ is af$ne for CG(u, U). 

Sketch of proof (cf. [18, Lemma 3-21 or Step 2 of the proof of 124, 
Lemma 3.11). For most n E Z, we have s$fin = sun$ + scun[un, c]$ = 
s c $ f i n [ u ~ c ] .  By polynomial divergence, we conclude that this approxima- 
tion holds for all r E R, and hence there is some cs E H with sc$ = s$cs and 
[ G ,  cs]  = [uiic]. 

Since [ f i ,  cs] = [ u i i ]  is independent of s ,  we have cs(ct)-I E CH(E) for 
s ,  t E F\G. Then, because 

and CH(fi)  acts essentially freely on A\H [24, Lemma 2-81, we must have 
csu = cs for a.e. s. Because u is ergodic on F\G, this implies s b cs is 
essentially constant, as desired. 0 

It is straightforward to complete the above sketch to a full proof, ex- 
cept that it relies on the nonobvious assumption that n b [ K c ]  is a poly- 
nomial. Of course n b [un, c] is a polynomial (cf. 125, Proposition 3.4.1]), 
but the homomorphism - : U + 0 is not a polynomial if is not unipo- 
tent. The following lemma is all that is required to patch up the proof. 

LEMMA 5.4. U is any connected unipotent subgroup of G con- 
tained in AHG($), then there is some connected subgroup Uo of U with 
CG(u, U) = CG(u, Uo) and such that is unipotent. 

Sketch of proof. It suffices to find some 6 > 0 such that [ u ~ c ]  is 
unipotent for all r E R and all c E CG(u, U; 6). (For then we set Uo = 
( [ur ,  c] 1 r E R, c E CG(U, U; 6)) .) Modding out rad H (= nil H )  andZ(H), 
we may assume H is semisimple with trivial center (and hence H is a real 
algebraic group, not just locally algebraic). 

Since 0 is a connected nilpotent group, its Zariski closure can be writ- 
ten in the form V X T, where V is unipotent and T is an algebraic torus. 
Because each element of 0 has zero entropy, T is compact (see 6.1), so it is 
an algebraic subgroup of H 125, p. 401. (Indeed, the variety HIT is quasi- 
affine.) Write [u?] = [ u i i I V  - [GIT with [u?IV E V and [ui41T E T. 
An argument from polynomial divergence on HIT shows there is some cs E 

H with s$cs = sc$ and fires = cs f i r[u i i Iv .  For most r E R, we have 
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This implies the map r I+ cs[u-lT is constant. Hence [u-lT = e for all 
r E R. 0 

5B. Reduction. 

Notation 5.5. Let U be the identity component of a maximal unipo- 
tent subgroup of G containing u ,  and set P = Np(U), a minimal parabolic 
subgroup of Go. Let LEVI be a Levi subgroup of Go. 

THEOREM 5.6. $ is affine for Po .  

Proof. We set Uo = e and recursively define Ui+l = CG(u, Ui) n U. 
By induction on i ,  Affine for the Relative Centralizer (5.3) implies y5 is 
affine for Ui for all i .  Because ( u ,  U) is nilpotent, we have Ui = U when i is 
sufficiently large, so $ is affine for U. Therefore Affine for the Relative 
Centralizer (5.3) asserts y5 is affine for NGo(U) G CG(u, U), as desired. I3 

COROLLARY 5.7. (U fl LEVI) - is a unipotent subgroup of H. 

Proof. There is some a E Po such that U fl LEVI is contained in the 
horospherical subgroup associated to a (cf. 3.10). Then (U fl LEVI) - is 
contained in the horospherical subgroup associated to 5,  so (U fl LEVI) - 
is unipotent. 0 

PROPOSITION 5.8. We may assume every nontrivial connected unip- 
otent subgroup of LEVI is ergodic. 

Proof. Assume the contrary. 

Step 1. LEVI is a product LEVI = Nl . N2 of two of its nonergodic 
connected normal subgroups. 

Proof. We may assume LEVI is ergodic on F\G (else the assertion 
of Step 1 is obvious), and hence the maximal solvmanifold quotient of F \G 
is trivial. Set G = G/rad G, so that F\G is the maximal semisimple quo- 
tient of F \G. If V is a nontrivial connected nonergodic unipotent subgroup 
of LEVI, then, since F\G has no solvmanifold quotient, we know V must 
be nonergodic on \G (see 4.28). Since is not Ad-precompact, we con- 
clude that f' is a reducible lattice in G (see 4.27). Therefore can be de- 
composed into a product of two nonergodic normal subgroups (cf. [17, 
Theorem 5.221). 

Step 2. We may assume that if V is any connected unipotent non- 
ergodic subgroup of LEVI fl U, then $ is affine for a nonergodic normal 
subgroup of G containing V. 
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Proof. The Mautner Phenomenon (4.26) implies the ergodic compo- 
nents of Vare the orbits of some normal subgroup N of Go which contains 
V. Since is unipotent, 4 maps N-orbits to N-orbits, where is some 
normal subgroup of HO with closed orbits on A\H. By induction on dim G, 
we may assume 4 is affine for N via N on each N-orbit. Thus, for each N- 
orbit O, we have a (local) epimorphism crO : N -+ N. Since 4 is affine for Po, 
all the uO agree on ( P  n N)O. Since P fl N is a parabolic subgroup of N, 
we conclude from Theorem 3.13(iii) that all the u8 are equal. Hence 4 is 
affine for N as desired. 

Step 3. Completion of proof. 

Proof. Since 4 is known to be affine for Po,  the main theorem will 
be proven if we show 4 is affine for a cocompact normal subgroup of LEVI. 
Thus it suffices to show 4 is affine for a cocompact normal subgroup 
of each Ni in the decomposition of Step 1. Let V = Ni n U, a maximal 
connected unipotent subgroup of Ni. Since Ni is semsimple, any closed 
normal subgroup containing V is cocompact. Thus Step 2 completes the 
proof. 

COROLLARY 5.9. We may assume R-rank(G/rad G) > 0 and the 
maximal solvmanifold quotient of F \G is trivial. 

Proof. Since 4 is affine for Po, we may assume G has a proper para- 
bolic subgroup, which means GO/rad G is noncompact (i.e., R-rank(GO/ 
rad G) > 0). Therefore LEVI has a nontrivial connected unipotent sub- 
group, which the Proposition asserts we may assume is ergodic. Then 
LEV1 is ergodic, and hence F \G has no solvmanifold quotient. 

COROLLARY 5.10. We may assume that i f X  is any connected sub- 
group of G which does not project to an Ad-precompact subgroup of G I  
rad G, then X is ergodic on F\G. 

Proof. The Moore Ergodicity Theorem (4.27) (in conjunction with 
Proposition 5.8) asserts X is ergodic on the maximal semisimple quotient 
of F\G. Since F\G has no solvmanifold quotient (5.9), then the Mautner 
Phenomenon (4.28) implies X is ergodic on F\G. 

We could easily reduce further to the case where R-rank(GO/rad G) 
= 1 (cf. [24, Section 4]), but this is not necessary. 

LEMMA 5.11. We may assume that if g E AffG($) and 2 = e ,  then 
g = e. 
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Proof. Let ker be the kernel of the homomorphism - : AffG($) + 

H. We wish to show that, by passing to a factor group of G, we may assume 
ker = { e } .  Since $ is (essentially) ker-invariant, it will suffice to show ker 
is a normal subgroup such that ker - r is closed in G. Note that Po normal- 
izes ker, because Po & AffG($) and the kernel of a homomorphism is nor- 
mal. Since ker is precisely the essential stabilizer of $, the Mautner phe- 
nomenon (4.24) implies there is a closed normal subgroup N of G 
contained in ker such that ker projects to an Ad-precompact subgroup of 
GIN. Therefore Lemma 3.23 asserts ker is normal in G. Now Lemma 4.25 
implies ker . F is closed in G. 

LEMMA 5.12. There is an isomorphism A : G + H such that f i  = p 
for all p E [Po, Po] (in particular, forp  E U (7 LEVI), and f i  ~p - Z(G) for 
all p E Po. 

Proof. We have shown that $ is affine for Po,  where P = NGo(U) is a 
parabolic subgroup of Go (see 5.6). So Po = AffG($)O is the identity com- 
ponent of a parabolic subgroup of Go. Similarly, since $ has finite fibers 
over A\H (see 2.15), we know Qo = AffH($-l) is a parabolic subgroup of 
H. Lemma 5.11 implies - : Po + Qo is a (local) isomorphism. 

Since r \G has no solvmanifold quotient, we know [G, GI - F is dense 
in G. Therefore Proposition 4.22 asserts G = [G, GI -Z(G). Hence Theo- 
rem 3.16 will imply the desired conclusion if we show raTG = rad H. Let 
KG and KH be the connected normal subgroups of G and H, such that KG/ 
rad G and KH/rad H are the maximal compact factors of GIrad G and 
HIrad H,  respectively. We will show KG is the unique maxima1 connected 
nonergodic normal subgroup of Po. Of course, KH can then be similarly 
characterized in QO, from which it follows that I?G = KH. Since rad KG = 
rad G and rad KH = rad H ,  this implies r x G  = rad H, as desired. 

All that remains is to prove KG is the unique maximal connected non- 
ergodic normal subgroup of Po. So let K be some other such. Since K is 
nonergodic, it projects to an Ad-precompact subgroup of GIrad G (5.10). 
Therefore K - KG projects to an Ad-precompact subgroup of GIrad G, and 
hence K .KG is nonergodic. Then the maximality of K implies KG G K. 
Since K is normalized by Po and projects to an Ad-precompact subgroup 
of GIrad G, Lemma 3.23 asserts K is normal in G. Because KG S K and 
KIrad G is Ad-precompact, this implies K = KG as desired. 

6.  Zero-entropy translations. This section can be viewed as a con- 
tinuation of Section 4C. We show that, modulo finite covers, the study of 
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ergodic zero-entropy translations can be reduced to the study of unipotent 
translations. 

Assumptions. Assumption 4.14 and Notation 4.17 are in effect. 

LEMMA 6.1 (Dani). The translation by g has zero entropy iff every 
eigenvalue of Adg is of absolute value 1 .  

Proof. ( <= ) See [7, Appendix]. ( * ) This follows from [5, Theorem 
3.51. 

PROPOSITION 6.2. Ifs has zero entropy, then T* is compact. There- 
fore Fv is finite. 

Proof (cf. [4, Corollary 2.5, p. 5781). Let TK be the maximal com- 
pact subgroup of T*, and let T: G ->Â T*/TK be the composition of v with 
the natural homomorphism T* + T / T K .  Replacing the ergodic zero- 
entropy translation g by a conjugate if necessary, we may assume F< g ) is 
dense in G. Since g e ker T (see 6.1), this implies GT <= FT. But GT is 
connected because g e ker ?f, and FT is discrete (see 4.12), so we must have 
GT = FT = 1. Since Gv = T ,  this implies T = TK is compact, as 
desired. 

When G is connected and solvable, Auslander [I, Theorem C] went 
beyond Proposition 6.2 by showing FT = e .  The following example shows 
this stronger result is unfortunately not true for arbitrary (nonsolvable) 
groups. 

Example 6.3. Let Mat2(R) be the additive group of 2 X 2 real matri- 
ces (ER4). Let 

where SL2(R) acts by left multiplication and SO(2) acts by multiplication 
on the right. For a R, let Ra SO(2) be the rotation through 27ra radi- 
ans. Set 

Note F is a lattice in G, and we have G* E G, T* = S0(2), and Fv = 
< RiI4> # e .  However, for any g e SLz(R) which is ergodic on SL2(Z)\ 
SL2(R), and for any irrational a, the translation by e X ( g  X Ra) is er- 
godic (e.g., by the Brezin-Moore criterion (4.28) because the maximal 
solvmanifold quotient is S0(2).) 
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PROPOSITION 6.4 (cf. Theorem 4.1 of [I, Part 111). I f  FIT = e ,  then 
some nonzero power of g is isomorphic to a translation on a homogeneous 
space of a group whose radical is nilpotent. 

Proof (cf. [4 ,  pp. 575-5761). Passing to a covering group of G if nec- 
essary, we may assume Go is simply connected, and G = Go X ( g ) .  
Possibly replacing G by a subgroup of finite index (and g by some power) 
we may assume G* is connected. Replacing I' by a conjugate subgroup if 
necessary, we may assume F ( g )  is dense in G. Since Tv = e ,  we know 
( g ) ~  is Zariski dense in T*, so we may choose T* to be a subgroup of 
( g )*. Hence T* commutes with Adg. 

Since Go is simply connected, we can identify Aut Go with Aut(5j') and 
hence view T* as a group of automorphisms of G. Since [T*, Adg] = e ,  we 
can form the semidirect product G X T* = Go X ((g) X T*). Of 
course, we have the embedding G + G X T*: x I+ x X e .  

Define the map ip: G -> G X T*: x I+ x X (x-IT). Though ip is 
(usually) not a group homomorphism, its image is a subgroup of G X T*: 

since yXrv = y v  because G/ker IT is abelian. Since ip is a homeomorphism 
onto its image, it follows that the image is closed. Note that p is affine for g 
via gip, because gT* = g implies gxr = g for all x e G. Since FIT = e ,  ip 

factors through to a map <p : T \G -> (F X e)\G<p which is affine for g . It is 
not difficult to verify that rad(Gip)(=(rad G)ip) is nilpotent. 

COROLLARY 6.5. Suppose g has zero entropy. Then, for some non- 
zero power gn of g ,  there is a finite-volume homogeneous space F1\G' of 
some Lie group G' whose radical is nilpotent, and a continuous map $: 
F'\Gf -+ r \ G  which is afjine for some translation g ' e G' via gn. Further- 
more, every fiber of $ is finite. 

Proof. Let F' be a subgroup of finite index in F, with F'v = e (cf. 
6.2). The natural map F'\G + I'\G has finite fibers, and Proposition 6.4 
shows some power of g on I' '\G is isomorphic to a translation on a group 
whose radical is nilpotent. 

The following lemma is well-known if G is algebraic, but seems to 
require a bit of additional work in the general case, especially if G/GO is 
infinite. 
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LEMMA 6.6. Suppose F \G is locally faithful, g has zero entropy, and 
rad G is nilpotent. Then, for some nonzero power gn of g ,  there is a unipo- 
tent element u of G and some k e Go satisfying: gn = uk = ku ,  and Adk 
generates a precompact subgroup of GL(Q). Furthermore, ifT \G is faith- 
ful, then k generates a precompact subgroup of G. 

Proof. Replacing G by a subgroup of finite index if necessary, we 
may assume that either g e Go or G = Go X ( g ) .  (We may also assume 
Go is simply connected.) Since rad G is nilpotent (so Go is locally alge- 
braic), in either case it is easy to construct a real algebraic group Galg and a 
homomorphism a :  G -+ Galg such that ker a is a discrete subgroup of Go. 
For any subgroup X of G, we write for the Zariski closure of Xa in Gdg. 
Because F r  is finite we may replace F and G by subgroups of finite index to - - 
assume F r  = e ,  so that Galg can be constructed with G/GO unipotent. 

Write ga = iik = ku, with i i  algebraically unipotent and k semisim- 
pie, in G. Since G/@ is unipotent, k e GÂ¡ Because Go is locally alge- 
braic, I@: Goal < a. So, perhaps replacing g by a power gn, we may 
assume k Goo. Indeed we may assume the Zariski closure of ( k )  is con- 
nected. Then there is a one-parameter Lie subgroup ̂  of GOa through k, 
and [ii, k"] = e for all r e R. Lift k" to a one-parameter subgroup kr of Go 
and set u = g k l ,  so ua = ii. Now [u,  k"] a = [ua, (kay] = [ii, k"] = e for 
all r e R. Since ker a is discrete, this implies [u ,  k ]  = e. 

Now suppose r \ G  is faithful. Since is compatible with Z(G), then 
Z(G) is compact, so the map Ad: G -Ã GL(9) is proper. 0 

THEOREM 6.7. Suppose g and h are invertible ergodic zero-entropy 
affine maps on faithful finite-volume homogeneous spaces F\G and A\H 
of connected Lie groups G and H. Assume rad G and rad Hare nilpotent, 
and let i f /  be any ergodic joining of ( g ,  F\G) with (h ,  A\H) with finite 
fibers over F\G. Then ip is a twisted affine joining. I.e., there is a finite 
cover G' of G, a lattice r '  in G' , homomorphisms a : G' + Co(g) and 13 : 
G ' -Ã CJ{W with F ' a  = e = I?'@, and a measure-preserving affine map 
4: r ' \ G '  + A\H such that, under the natural map Y \ G '  X A\H -Ã 

r \ G  X A\H, the joining on F'\G' X A\H associated to the map T's \-r 

(Fs a.) if/ - 0, projects to I). 

Proof. By Lemma 6.6 we may write g = uk = ku and h = vl = lv 
where u and v are unipotent, while K = (k) c Go and L = (7) C Go are 
compact. We may assume K andL are connected. Any ergodic component 
of the action of ( g ,  k, 1) on F\G X K X L is isomorphic to the action of 
( g ,  t )  on r f \ G  X T for some F'  of finite index in r, and some torus T. 
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The projections G X K X L -+ K and G X K X L -+ L restrict to 
homomorphisms a :  G X T -+ K and (3: G X T -+ L with ( g ,  t ) a  = k and 
(g ,  t)(3 = I and I" a = e = I"/3. Thus we may twist on both a and (3. For 
simplicity of notation let us assume $ is a map rather than a general join- 
ing. The resulting map 

is affine for u via v ,  so Theorem 2.1 asserts it is affine. Set t = e to conclude 
that 

is affine. This implies $ is twisted affine. 

COROLLARY 6.8. Suppose g and h are weak-mixing invertible er- 
godic zero-entropy affine maps on faithful finite-volume homogeneous 
spaces of connected Lie groups G and H. If$ : I? \G -+ A\H is affine for g 
via h ,  then $ is an affine map (a.e.). 

Proof. Proposition 4.22 implies rad G and rad H are nilpotent, so 
Theorem 6.7 applies. Since ( g ,  W )  is weak-mixing, also the finite cover 
( g ,  F"G)  is weak-mixing, so there can be no twist. Thus $ is affine. 
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