
CORRECTION TO "ZERO-ENTROPY AFFINE MAPS 
ON HOMOGENEOUS SPACES" 

Abstract. Proposition 6.4 of the author's paper [American Journal ofMathematics 109 (1987), 927- 
9611 is incorrect. This invalid proposition was used in the proof of Corollary 6.5, so we provide a 
new proof of the latter result. 

Professor A. Starkov has pointed out an error in the proof of Proposition 6.4 
of the author's paper [American Journal of Mathematics 109 (1987), 927-9611. 
Contrary to the assertion near the end of the first paragraph, it may not be possible 
to choose T* to be a subgroup of ( g )  *. (The problem is that ( g )  * may not contain a 
maximal torus of (Rad G)*, because the maximal torus of (g)* may be diagonally 
embedded in LEVI* x T* .) The proposition cannot be salvaged, so the claim must 
be retracted. 

Fortunately, Proposition 6.4 was used only in the proof of Corollary 6.5, for 
which we can give a direct proof. As it is no longer a corollary, we now reclassify 
this as a proposition. 

PROPOSITION 6.5. Suppose g is an ergodic translation on a locally faithfulfinite- 
volume homogeneous space T\G of a Lie group G, and assume G = FGO = GO(g) .  
I f  g has zero entropy, then, for some nonzero power gn of g, there is a finite-volume 
homogenenous space V\G1 of some Lie group G' whose radical is nilpotent, and a 
continuous map $: r'\G1 Ã‘ r\G that is affine for some translation g' E G' via gn. 
Furthermore, every fiber of ip is finite. 

Proof. Assume for simplicity that G is connected and simply connected. (A 
remark on the general case follows the proof.) Because g is ergodic, we may 
assume V(g) is dense in G. 

Let G* be the identity component of the Zariski closure of AdG in Aut (G),  
let S* be a maximal compact torus of the Zariski closure of Adc(g),  and let L*T* 
be a reductive Levi subgroup of G*, containing S*. (So L* is semisimple and T* 
is a maximal torus of Rad G* that centralizes L*. From Proposition 6.2, we know 
that T* is compact.) The composition of AdG and the projection from G* onto 
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T*/(L* n T*) is a homomorphism, which, because G is simply connected, can 
be lifted to a homomorphism TT:  G -+ T*. Define a map 4: G -+ G x T* by 
X^ = (x,xPT), where xPT = (x- ' )~.  Notice that 

for all x, y â G. 
The definition of 4 is based on the nilshadow construction of Auslander and 

Tolimieri [AT] (or see [W, $41). In particular, Rad G^ is the nilshadow of Rad G, 
so Rad G^ is nilpotent. 

Let F\G be the faithful version of l -^\~q More precisely, let F = r ^ / ~  
and G = G^/N, where N is the largest normal subgroup of G^ contained in F̂ . 
We know P is finite (see Proposition 4.20), so, replacing F by a finite-index 
subgroup, we may assume P = e.  This implies that (7x)^ = 7w for all 7 â r - - 
and x ? G, so 4 induces a well-defined homeomorphism $: r \ G  -+ r \G.  

Unfortunately, d> is not affine for g if T* does not centralize g. We will 
compensate for the action of T* by composing with a twisted affine map. Assume 
for simplicity that L* n T* = e. (Under this assumption, the map L* x T* -+ L*T* 
is an isomorphism. In general, it is a finite cover.) Let S ,̂ = (L* n S*)', and let S*,. 
be a subtorus of S* that is complementary to S>nd contains S* fl T*. Let ST be 
the image of S i  under the projection L* x T* -+ L*, and notice that SE n Sy = e. 
Thus, we have 

Because F(g)  is dense in G and P = e, we see that Sz finitely covers T*, via 
the projection S*, x T* -+ T*. 

Let L be a semisimple Levi subgroup of G with AdG L = L*, and let be - - 
the corresponding Levi subgroup of G. Since ~ a d G  is nilpotent, and f \ G  is 
faithful, we know that Z(G) is compact (see Corollary 4.6), so some compact 
torus 5'_i_ C finitely covers ST, via the map AdF 

By construction, we know that T* is finitely covered by S*,,, so the homomor- 
phism TT:  G -+ T* lifts to a homomorphism G -+ 52. By composing this with 
the projection Sz Ã‘ Sy, we obtain a homomorphism G -+ ST. Then, since SL 
finitely covers ST, this lifts to a homomorphism TT: G -+ SJ_. Note that, from the 
definition of TT, we have (AdE(x^),xT) G S*,., for all x E G. Because Sz C S* 
is contained in the identity component of the Zariski closure of Adc(g), which 
centralizes g, this implies that 

Replacing F by a finite-index subgroup, we may assume F̂  = e; hence TT 
induces a well-defined map from F\G to Ŝ _. Thus, we may define a homeo- 
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morphism 

Then 

In other words, $ is affine for g via gdgTf.  

Remark. If G is not connected, then, because G = GO(g), there is no harm in 
assuming G = Go xi (g), and we may assume Go is simply connected. 

Let G* and G be the identity components of the Zariski closures of Ad G and 
Ad Go, respectively. By replacing g with a power gn, we may assume Ad g ? G*. 
Let S+ be a maximal compact torus of the Zariski closure of Ado(g), and let 
S* = (S+ fl G-)'. Let L*T+ be a reductive Levi subgroup of G*, containing S+, 
and define T* = T+ ̂ \ G- . 

Let TLT+ be a maximal compact torus in G*, containing S+ (where TL is 
a compact torus in L*), so TLT* is a maximal compact toms in G .  Then 
TLT*S+ = TLT+, so there is a subtorus Z of S+ that is almost complementary to 
TLT* in TLT+. Assume for simplicity that ZTL fl T* = e, so there is a natural 
projection G* Ã‘Ã T*. Then we may define a homomorphism x: G Ã‘ T* by 
composing AdG with this projection. 

We now construct a semidirect product G* xi T*. Let 

We may assume Ad g" $! Ad Go, for all n -4 0, for otherwise we could assume 
G is connected. Therefore, G GO(Adg) injects into H. Because 

we see that T* c NH(G). Therefore, T* is a group of automorphisms of G, so 
we may form the semidirect product G x T*. 

With these definitions of G*, T*, S*, L*, TT, and G* x T* in hand, we may 
proceed essentially as in the proof above. 
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