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A b s t r a c t  

Suppose L is a semisimple Levi subgroup of a connected Lie group G, 
X is a Borel G-space with finite invariant measure, and 
a :  X x G -+ GLn(K) is a Borel cocycle. Assume L has finite 
center, and tha t  the real rank of every simple factor of L is a t  least 
two. We  how that  if L is ergodic on X ,  and the restriction of a 
to X x L is cohomologous to a homomorphism (modulo a compact 
group), then, after passing to a finite cover of X ,  the cocycle o itself 
is cohomologous to  a homomorphism (modulo a compact group). 

1 Introduction 

Defini t ion 1.1 ( [I l l ,  Defns. 4.2.1 a n d  4.2.2, p. 65) SupposeGand H 
arc Lie groups. and X is a Borel G-space. A Borel function a :  X x G Ã‘ H 
is a Borel cocycle if, for all g, h E G,  we have 

(x, gh)Â¡ = (x, g)Â¡'(xg h)Â¡ for a.e. x E X 

Two cocycles a and B are cohomologous if there is a Borel function 
: X Ã‘) H, such that,  for all g E G ,  we have 

(x, g)Â¡ = (x4)-I (x, g)%)O for a.e. x E X. 

Any continuous group homomorphism a :  G Ã‘ H gives rise to  a cocycle, 
defined by (.,g)Â¡ = go. For actions of semisimple groups, R. J.  Zimmer's 
Cocycle Superrigidity Theorem often shows that (up to cohomology, and 
modulo a compact group) these are the only examples. 

Defini t ion 1.2 (cf. 1.5) Suppose G is a Lie group, A' is an ergodic Borel 
G-space with finite invariant measure, H is a subgroup of GLn(IR), and 
a :  X x G -+ H is a Borel cocycle. We say a is Zariski dense if H is 
contained in the Zariski closure of the range of every cocycle 0 :  X x G Ã‘ H 
that is cohomologous to a. 
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T h e o r e m  1.3 (Zimmer ,  cf.[ l l] ,  Theorems.  5.2.5, 7.1.4, 9.1.1) 
Suppose G is a connected, semisimple Lie group, X is a n  ergodic Borel 
G-space with finite invariant measure, H is a Zariski closed subgroup of 
G L n ( E ) ,  and a :  X x G -+ H is a Zariski-dense Borel cocycle. Assume G 
has finite center, and that the real rank of every simple factor of G is  at 
least two. If H is  reductive, then, after replacing G and X by finite covers, 
there are: 

1 .  a homomorphism a": G -+ H ;  

2. a compact, normal subgroup I< of H that centralizes G o ;  and 

3. a cocycle (3 that is cohomologous to a;  

such that, for every g ? G ,  we have ( x ,  g)g G g u K  for a.e. x 6 X 

This paper extends Zimmer's result to groups that are not semisimple. 
Our main theorem reduces the general case to the semisimple case. 

T h e o r e m  1.4 Let G be a connected Lie group, X be a Borel G-space with 
finite invariant measure and H be a connected Lie subgroup of GLn(E%) 
that is of finite index in its Zariski closure, and has no nontrivial compact, 
normal subgroups. Let a :  X x G -+ H be a Zariski-dense Borel cocycle. 
Let L be the product of the noncompact, simple factors in  a semisimple Levz 
subgroup of G.  Assume that the L-action on X is ergodic. Let a": L -+ H 
be a continuous homomorphism and I i  be a compact subgroup of H that 
centralizes L o .  Su,ppose that H = (Rar1 H ) L l ' K ;  and that for every I ? L ,  
we have ( ~ ' 1 ) ~  6 l o I i  for 0.e. x 6 .Y. Then a- extends to a continuous 
homomorphism defined on all of G and a is cohomologous to the cocycle (3, 
defined by ( - , g ) 0  = gO. 

By combining our theorem with Zimmer's, we obtain the following 
general result. 

Defini t ion 1.5 (cf.[[ll], Defn. 9.2.2, p. 1671) Suppose L is a connected 
Lie group, X is an ergodic Borel L-space with finite invariant measure, and 
a :  X x L -+ G L n ( R )  is a Borel cocycle. The Zariski hull of a is a Zariski 
closed subgroup J of G L n ( R ) ,  such that a  is cohomologous to  a cocycle 
(3: X x L -+ G L n ( R ) ,  such that the range of (3 is contained in J ,  but a 
is not cohomologous to any cocycle whose range is contained in a Zariski- 
closed, proper subgroup of J. The Zariski hull J always exists, and is 
unique up to  conjugacy. 

Corol lary 1.6 Let G ,  X ,  H ,  a  and L be as in  Theorem 1.4. A s  in the 
theorem assume that the L-action on X is ergodic. Suppose further that 
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L has finite center, the real rank of every simple factor of L is at least 
two and that the Zariski hull of the restriction of a to X x L is  reductive. 
Then,  after passing to a finite cover of X, the cocycle a is cohomologous to 
a homomorphism. 

R e m a r k  1.7 The assumption that L is ergodic on X cannot be weakened 
to  the ergodicity of G. To see this, suppose L is not ergodic, and let Y 
be the space of ergodic components of L on X. The Mautner phenomenon 
[8, Thm. 1.11 implies that L and [L,G\ have the same ergodic components, 
so the G-action on X factors through to an action of G / [ L ,  G] on Y .  Because 
G/[L,G] is amenable, there may be cocycles of this action that  are not 
related to  the algebraic structure of the acting group (cf. [I]). Pulling back 
t o  G, these are cocycles on X that have almost nothing to do with G. 

On the other hand, it is not known whether the assumption that  H is 
reductive can be omitted from Zimmer's Theorem; perhaps this hypothesis 
is always satisfied. Zimmer [12, cf. Thm. 1.11 proved this to  be the case for 
cocycles that satisfy an L1 growth condition. Then, by an argument very 
much in the spirit of the present paper, he was able to derive a superrigidity 
theorem for L1 cocycles of actions of some non-semisimple groups (see [12, 
Thm. 4.11). 

Zimmer's cocycle superrigidity theorem (1.3) was inspired by the super- 
rigidity theorem for finite-dimensional representations of lattices in semisim- 
pie Lie groups, proved by G. A. Margulis [7, Thm. VII.5.9, p. 2301. The 
present work was suggested by the author's [9], [ lo,  $2, $51 generalization 
of Margulis' theorem to non-semisimple groups. 

After some preliminaries in $2, we prove a restricted version of Theo- 
rem 1.4 in $3. The final section of the paper removes the restrictions, and 
presents a proof of Corollary 1.6. 

Acknowledgement  1.8 I would like to thank my colleagues a t  the Tata 
Institute of Fundamental Research for their generous hospitality throughout 
the visit during which much of this work was carried out. I would also like 
to  thank Alex Eskin and Robert J. Zimmer for several helpful suggestions. 
This research was partially supported by a grant from the National Science 
Foundation. 
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2 Preliminaries 

S t a n d i n g  assumpt ions  2.1 The notation and hypotheses of Theorem 1.4 
are in effect throughout this section. 

N o t a t i o n  2.2 We usually write our maps as superscripts. Thus, if x E X 
and 0: X Ã‘ Y, then :c@ denotes the image of x under 4. 

If g and 12 belong to H (or to any other group), then g'l denotes the 
conjugate h l g l t .  

For any Borel function 4 whose range lies in HI we use - 4  to  denote 
the function defined by ( Â ¥ ) -  = ((.)@)'I. 

Defini t ion 2.3 Let Q be a subset of G ,  and let, 3: X x G + H be a Borel 
function. We use 3lo to denote the restriction of 3 to X x Q. 

If Q is countable, or is a Lie subgroup of G,  then there is a natural choice 
of a measure class on Q, and we use (A" x Q)̂  to denote the essential range 
of 7\Q. (Recall that the essential range is the unique smallest closed set 
whose inverse image is conull.) 

If, for some r E G, the function J:\̂ is essentially constant, then we 
often omit the refeience to X. and simply write r F  for the single point in 
(X x r)7 .  

Defini t ion 2.4 Let Q be a subgroup of GI  and let T :  X x G + H be a 
Borel function. We say that qQ is a homomorphism if there is a homo- 
morphism a :  Q -+ S ,  such that, for all r ? Q ,  we have (., r)'7' = r" a.e. 

The  following well-known result is a straightforward consequence of the 
cocycle identity. 

L e m m a  2.5 Let Q be a subgroup of G ,  and  let F: X x G + H be a 
Bore1 cocycle. Th,en 3IQ is a homomorphism if a n d  only if (., r)7 = r3 is 
essentially constant, for each r â Q.  

a 

Defini t ion 2.6 Let us say that an element g ? GLn(K) is split if 
every eigenvalue of g is real and positive. (In other wolds, the real Jordan 
decomposition of g [3, Lem. IX.7.1, p. 4301 has no elliptic part.) 

Let us say that an element of L is split if it belongs to a one-parameter 
subgroup T of L, such that Adj, t is split, for all t 6 T .  Note that if I is a 
split element of L, then I" is a split element of H .  
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L e m m a  2.7 Suppose I is a split element of L,  k 6 K ,  and T is a connected 
subgroup of H ,  such that lUk  normalizes T .  Then k normalizes T .  

P r o o f  The normalizer of T is Zariski closed (cf. proof of [ll, Thm. 3.2.5, 
p. 42]), so it contains the elliptic part of each of its elements (cf. proof of 
[6, Thm. 15.3, p. 991). Therefore, the desired conclusion follows from the 
observation that  k is the elliptic part of l u k .  I 

T h e o r e m  2.8 (Bore l  Dens i ty  Theorem [[2], Cor .  2.61) Suppose H 
acts regularly o n  a variety V ,  p is a probability measure on  V ,  and h is 
a split element of H .  If p is h-invariant, then Ii fixes the support of p 
pointwise. 

Corol la ry  2.9 Suppose H acts regularly on a variety V. Let $: X -+ V 
be a Borel function, and let g 6 G and h ? H, and let JC be a com,pact 
subgroup of H that centralizes h. Assume x'1  ̂ G ( x $ ~ ) "  for a.e. x 6 X, 
and h is split. Then  h fixes the essential range of 7b pointwise. 

P r o o f  Let V/K be the space of I{-orbits on I F .  The induced map $: X -+ 
V/K sat,isfies 297 = a;'̂. Therefore. the G'-invariant piobability measure 
on X pushes via )̂ to  an h-invariant probability measure fi on V / K .  By 
using f i  to  integrate together the .^-invariant probability measure on each 
JC-orbit, we may lift ji to an h-invariant probability measure p on V. Note 
that the support of p is (A"^)^", where -V^' is the essential range of +. On 
the other hand, the Borel Density Theorem implies that h fixes the support 
of p pointwise. 

T h e o r e m  2.10 ( M o o r e  Ergodici ty Theorem,  cf.[[8], T h m .  1.11) If 
T is a connected subgroup of L ,  such that, for every simple factor Lz of L, 
the projection of T into L , /Z(L, )  has noncompact closure, then T is ergodic 
o n  X 
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Proposition 2.11 ([4], Thm. XV.3.1, pp. 180-181, and see p. 186) 
If G is  a Lie group that has only finitely many  connected components, then 
G has a maximal compact subgroup I<, and every compact subgroup of G is 
contained i n  a conjugate of K .  

a 

Proposition 2.12 ([[4], Thm. XIII.1.3, p. 1441) If a Lie group G is 
compact, connected, and solvable, then G is  abelian. 

0 

Lemma 2.13 Let (7 be a covering group of G ,  and let a :  X x G  ->Â H be the 
cocycle naturally induced by a. If a is cohomologous to  a homomorphism, 
then  a is  cohomologous to a homomorphism. 

Proof By assumption, there is a Bore1 function 4: X ->Â H, such that,  for 
all g 6 (7, the expression x-'t>(x,g)a(xg)'t' is essentially independent of a;. 
Then the same is true with a in place of a, for all g 6 G, as desired. 

a 

3 Proof of Theorem 1.4 (The Main Case) 

This entire section is devoted to a proof of Theorem 1.4, so the notation 
and hypotheses of Thm 1.4 are in effect throughout. 

Assumption 3.1 Throughout this section, we assume Rad G is nilpotent, 
and that G has no nontrivial compact semisimple quotients. See 4.1 for an 
explanation of how to obtain the full theorem from this special case. 

Notation 3.2 Let R = Rad G, so G = RL. By passing to a covering group 
of G,  we may assume R is simply connected (see 2.13). 

By assumption (and perhaps replacing K with a larger compact group), 
we may write H = S o (MK), where 

(1) S is a connected, split, solvable subgroup; 

(2) M = Lu is connected and semisimple, with no compact factors; 

(3) K is a compact subgroup that centralizes M ;  

(4) (X x L)Â C MK, and 

(5) h4n K = Z ( M ) .  
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. Now a induces a cocycle a: X x G -+ H/(SK)  S M / ( M  fl 10. Note 
that O.\L = F is a homomorphism. 

Proposition 3.3 (X x R)Â = e. 

Proof Let P be a minimal parabolic subgroup of G. From [ l l ,  Step 1 of 
proof of Thm. 5.2.5, p. 1031, we know there is an (almost) Zariski closed, 
proper subgroup L of M and a Borel function 4:  X x P \ G  -+ L\M such 
that,  for all g 6 G ,  we have 

(xg, cg)@ = (x, c)^(x, g)z for a.e. (x, c) ? X x P \ G .  

In particular, for I ? L,  we have (xl,cl)^ = (x,c)^lz. Then, by Fubini's 
Theorem, we see that,  for a.e. c ? P\G, I ? PC I? L, and x 6 X ,  we 
have (xl, c)^ = (x, c)@lz. So 2.9 implies that lF fixes ( X  x c)^ pointwise 
(assuming that I is split), which implies (xl, c)@ = (x, c)^. So, from the 
ergodicity of PC D L (see 2.10), we conclude that (., c)@ = c^ is essentially 
constant. Therefore, for c ? P \ G  and T 6 Rad G, because cr = c, we have 

(x, c)@ = (XT, C T ) ~  = (x, c)@'(x, r)Â¡ 

Therefore, (x, r)" fixes ( X  x P\G)^  pointwise, so (x, r)z is trivial (cf. [ l l ,  
proof of Leni. 5.2.8, p. 1021). 

Definition 3.4 For r 6 R and I ? L, we have 

(x; r ~ ) "  = (x, r)a(xr, I)" = I", 

so we see that a  is a homomorphism. By replacing G with a finite cover, 
we may assume that  a  lifts to a homomorphism M:  G Ã‘ M (see 2.13). 
Because H = S o ( M K ) ,  there are well-defined Borel functions S :  X x 
G-+ S and K.: X x G-+ K,such tha t  

5 M (x, da = (x, g ) g  (x, g)K for a.e. x ? X 

Note that,  for u 6 L and r G R, we have 

(x, u)Â¡ = uM (x, u ) ~  for a.e. x 6 X ;  and 

(x, r)Â¡ = (x, U ) ~ ( X ,  ulK for a.e. x ? X. 

Note also that GM centralizes ( X  x G)^, because M centralizes K .  
Because S may not be a cocycle, Lemma 2.5 may not apply to S. 

However, the following lemma is a suitable replacement. 
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Defini t ion 3.5 Let Q be a subgroup of R. A function a: Q -+ S is a 
crossed homomorphism if there is a homomorphism K :  R -+ Kt ,  such that  
( T S ) ~  = rusuTs for all r ,  s 6 Q, where I(' = NK((Qu) ) /CK( (Qu) ) .  

We say that S\Q is a crossed homomorphism if there is a crossed homo- 
morphism 0: Q + S such that, for all T 6 Q, we have ( . , T ) ~  = T" a.e.. 

L e m m a  3.6 Let Q be a subgroup of R. 

1. S\n is a crossed homomorphism if and only if (., r)' is essen- 
tially constant, for each T ? Q .  

2. SJQ is a homomorphism if and only if S\Q is a crossed homo- 
morphism and ( X  x Q ) ~  centralizes Qs.  

P r o o f  (1) We need only prove the nontrivial direction, so assume (-, r ) s  = 
rs is essentially constant, for each r E Q. For convenience, let N = 
N K W ^  and C = cK^}). 

For T ,  s â Q, we have (x, r . ~ ) ~  = (x, ( X T ,  s ) ~ ,  so ( T S ) ~  = rsss(x-7')'K. 

This implies that s s ( x ~ " ) K  6 (Qs) ,  so we see that (X x QlK C N .  This 
also implies that ( . , r )% is essentially constant, modulo C .  Therefore, the 
induced cocycle E: X x N / C  is a homoinorphism, as desired. 

(2)  Because ( T S ) ~  = i ^ s S ( ~  ' ) \  we see that (rs)' = T^ss if and only 
if (x, T ) ~  centralizes ss. 

D 

Corollary 3.7 (of proof)  Suppose Q is a subgroup of R. Let 

N = ((Q'))  and C = CK ({Q')).  

If S\Q is a crossed homomorphism, then the cocycle x: X x Q -+ N/C,  
induced b y  K., is a homomorphism. 

D 

Nota t ion  3.8 Let U be a maximal connected unipotent subgroup of L, 
let U be a maximal connected unipotent subgroup that is opposite to  U, 
and let A be a maximal split torus of L that normalizes both U and U". 
Thus, NL(U)  n NL(U-) is reductive, and contains A in its center. 

L e m m a  3.9 Suppose T ? R, and u is a split element of L.  Let w = 
u , r ]  ? R, and assume (-, w ) ~  = ws is essentially constant, and that 
( X  x u)^ and (X x w)' centralize ws. Then (xu, rlS = (x, r)s(xlu)": for 
a.e. x â X. 
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Proof For a.e. x ? X, because r = unruw, we have 

( x u ,  r)" = ( x ,  u) -" (x ,  r)"(xr,  u)"(xru,  w)" 

= (x,u)-K(x,r)auMws(xrll')^(xru,w)K 

( ( X ,  T)"'" W s ) ( " " ~ K ( W s ) .  

So the Borel Density Theorem (see 2.9) implies that ( x ,  r ) " "  ws = (x, r)" .  
Thus, we have 

( X U ,  ?-)a â ( X I  r ) " ( ~ > ^  C K ^ ) ,  

which implies ( xu ,  r ) s  = ( x i  r ) s ( x lu )K  

Corollary 3.10 Suppose r ? R, u is a split element of L ,  and W is a 
subgroup of R. Assume S\w is a homomorphism, ( X  x u ) ^  centralizes 
p, and that w = [u,r]  ? W .  If ( Â ¥  r)' = rs  is essentially constant, then 
( X  x ,u)^ centralizes rs .  

D 

Corollary 3.11 Suppose u is a unipotent element of L,  and W is a sub- 
group of R that is normalized by u .  If s\\~ is a homomorphism, then 
( X  x ?A)^  cen,tralizes iVS. 

Proof Because u is unipotent, we may assume by induction on d imW 
that  ( X  x u ) ^  centralizes ( [ u ,  W][W, W)'. Then 3.10 implies that (X x u ) ^  
centralizes wS. 

0 

Definition 3.12 Given a Borel function 4:  X I<, let a ^ :  X x G -+ H 
be the cocycle cohornologous to a defined by 

Also define a Borel function S^ : X x G + S by ( x ,  g ) s  = ( x ,  f f ) sx* .  Note 
that  ( x ,  g)ff* ? ( x ,  9 ) s * g M ~ ,  for all ( x ,  g)  6 X x G.  

Corollary 3.13 Suppose Q and W are Lie subgroups of R, a8rt,d u is a splzt 
element of L ,  su,ch that [u, Q]  c W .  Assume S\\v is a homomorphism, and 
that ( X  x u)^ centralizes wS. Let & be the closure of ( ( X  x u)?. If u is 
ergodic on & then there is a Borel function 4: X + such that S^IQ 
is a crossed homornorphisni. 
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Proof Let Func(Q, S )  be the the space of Borel functions from Q to S, 
where two functions are identified if they agree almost anywhere. (The 
topology of convergence in measure defines a countably generated Borel 
structure on this space [ l l ,  pp. 49-50].) The function S\Q : X x Q -+ S 
determines a Borel function 3: X + Func(Q, S). From 3.9, we see that,  
for a.e. x G X ,  we have ( x u y  = a ; ^ ~ " )  $ fll^", where acts on 
Func(Q,S) via conjugation on the range space 5. Thus, the ergodicity 
of u implies that there is a Borel function 4 :  X -+ Ku,  and some 0 E 

Func(Q, S ) ,  such that x7̂ = a for a.e. x â X. That is, for a.e. x E X 
and a.e. r ? Q, we have ( ~ , T ) ~ X '  = ru. In other words, ( - , r ) '  = ru 
is essentially constant, for a.e. r E Q. Then, because Q has no proper 
subgroups of full measure, we conclude from the cocycle identity (applied 
to  d )  that  we have (-, r)s* = ru ,  for all r â Q. 

The following is the special case where W is trivial. 

Corollary 3.14 Let u be a split element of L that is ergodic on X, and let 
Ku be the closure of ( ( x  X U ) ~ ) .  Then there is a Borel function 4 :  X + Kt', 
such that S@lcRiuI is a crossed homomorphism. 

Most of the work in this section is devoted to showing that we may 
assume S\R is a homomorphism. The following proposition represents our 
first real progress toward this goal. Most of the rest is achieved by an 
inductive argument based on the unipotence of U and the solvability of R. 

Proposition 3.15 We may assume StGiL) is a homomorphism. 

Proof For convenience, let Q = CR(L), let V be the Zariski closure of 
(Qs), N = NK(V) and C = CK(V}. From 3.14, we see that,  by replac- 
ing a with a cohomologous cocycle a@, we may assume S\Cm is a crossed 
homomorphism. Then 3.7 implies that the induced cocycle E :  X x Q -+ 
N/C is a homomorphism. Therefore, the induced cocycle a: X x Q 4 

V N / C  is a homomorphism. Then, because Q is nilpotent (see 3.1), the 
Zariski closure of QT in VN/C is of the form W x T/C,  where IV C V 
is split and T is a compact torus (cf. [6, Prop. 19.2, p. 1221). Because 
maximal compact subgroups are conjugate (see 2.11), there is some v Â V 
with T C N u .  Because v normalizes C (indeed, it centralizes C),  and 3.10 
implies that  (X x L)^ c C, we know that K u  contains (X x L)^ ,  so 
there is no harm in replacing I< with K v .  Thus, we may assume T C I<- 
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Then, for any r 6 Q, ( X , W ) ~  and (x,w)^ are the projections of 
into W and TI respectively. Because T centralizes W,  we conclude that 
(X x Q)^ centralizes IVs, as desired. 

Lemma 3.16 Let Q be a one-parameter subgroup of R that is normalized, 
but not centralized, by A. If qQ is a crossed homomorphism, then SIQ is 
a homon~orphzsm. 

Proof For convenience, let V be the Zariski closure of ( Q ~ ) ,  N = NK(V) 
and C = CK(V). From 3.7, we know that the induced cocycle E :  X x Q -+ 
N / C  is a homomorphism. We wish to show that is trivial. 

Because A does not centralize Q,  there is some a ? A with ra = r2 for 
all r â Q. Because ras = rs(z'^aM, we see that (a;,  a)^ 6 N (see 2.7), and - 
that (. ,a^ is constant, modulo C .  Thus, aK = ( - , u ) ~ C  is a well-defined 
element of N/C, so E extends to a homomorphism defined on QA. Thus, 

- - - - 
we have rKaK = rd = r 2 ) ^  = (r^)2, for all r â Q. If Q^ is nontrivial, this - 
implies that 2 is an eigenvalue of AdNlc a^.  But eigenvalues in a compact 
group all have absolute value 1 - contradiction. 

a 

Lemma 3.17 (cf. 3.10) Given r ,  s 6 R, let w = \s,r] 6 R.  If (., r)s = rs, 
( s ) ~  = as, and (., w ) ~  = ws are essentially constant, and (X x (s, w))^ 
centralizes (s, w)', then (X x s)^ centralizes rs.  

Proof Same as 3.10 (and 3.9), with s and ss in place of u and uM. 

a 

Corollary 3.18 Let P and Q be subgroups of R, such that S\p is a homo- 
m,orphism, is  a crossed homomorphism, and [PI Q] c P .  Then S\po 
is a crossed homomorph.ism. 

Proof Because [PI Q] C P ,  we see from 3.17 that (X x P)^ centralizes Qs. 
Thus, for any p ? P and q â Q, we have 

is essentially constant, as desired. 
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Corollary 3.19 Let P and Q be subgroups of R, such that S\p and S\Q 
are homomorphisms, and [P, Q] c P. Then SIpQ is a homomorphism. 

Proof From the preceding corollary, we know that < ? I p Q  is a crossed 
homomorphism. 

Because S\p is a homomorphism, we know that (X x P)^ centralizes 
pS .  So, from 3.17 (and the fact that [Q, P] C P ) ,  we see that (X x P ) ^  
centralizes Qs. 

Because P is nilpotent (see 3.1), we may assume, by induction on dim P, 
that < ? l Q I Q , p ]  is a homomorphism, so ( X  x Q)^ centralizes [Q, ?Is. There- 
fore, from 3.17, we see that (X x Q)^ centralizes (X x P)'. 

By combining the conclusions of the preceding two paragraphs, we 
conclude that (X x QP)^ centralizes ( X  x QP)s, as desired. 

a 

Notation 3.20 Fix a normal subgroup Q of G, contained in R, such that 
S 1 [ Q Q ]  is a homomorphism. 

Proposition 3.21 We may assume S\ca(u) is a homomorphism. 

Proof Let 4 :  X -Ã  ̂ I<,' be as in 3.14. From 3.15 and 3.19, we know 
that S\Cn(L)[Q,Q] is a homomorphisn~. Thus, from 3.11, we know that Ku 
centralizes C/?(L)[Q,  Q], so PIG(L)E,Ql = S \cn(L) lQ ,~ l  is a homomor- 
phism. Thus, there is no harm in replacing a with ad ,  in which case, 
from the choice of 4, we see that SlcQ(u) is a crossed homomorphism. In 
addition, 3.16 (plus the fact that SIcQv) is a homomorphism) implies that 
CQ(U) is generated by subgroups T (one of which is [Q, Q]), such that SIT 
is a homomorphism. Therefore, 3.19 implies that S\Q is a homomorphism. 

a 

For each L-module V, we now define an AU-submodule V+ and an 
AU-submodule V .  The specific definition does not matter; what we 
need are the properties described in the proposition that follows. 

Definition 3.22 Let be the system of IR-root,s of L, let A be the base 
for determined by U, and let {A) be the Z-span of A. (Note that 

c (A).)  Define 

(A)+ = (Â¥, â (A) 3o, k ,  > 0 , LEA I I 
and (A)- = -(A)+. 
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Definition 3.23 Let V be a finite-dimensional L-module. For each linear 
functional A on A, let VA be the corresponding weight space. In particular, 
Vo = Cv(A).  

(1) If V =  Vo, let V+ = V- = V. 

(2) If V is irreducible, and Vo = 0, let V+ = V = V. 

(3) If V is irreducible, and V # Vo # 0, then every weight of V belongs 
t o  (A); let V+ = EAew+ VA and V- = EAE(+)- VA. 

(4) In general, define V+ = W +  and V = 1 7 ,  where each sum is 
over all irreducible submodules W of V. 

Proposition 3.24 Let V be a finite-dimensional L-module. Then: 

i 

s 4 .  V is an A U  submodule; and 

I 
I 5 .  VQ + V+ is the smallest U-submodule of V that contains both 

1 Vo and V + n V - .  
1 

Proof Only ( 5 )  is perhaps not clear from the definition. We may assume 
V is irreducible. Assume, furthermore, that V # Vo # 0, for otherwise 
we have V+ n V = V,  so the desired conclusion is obvious. Fix some 
A ? (A)+. If A $ ( A ) ,  then, in the unique representation A = Y, kaa  
of A as a linear combination of the elements of A, it must be the case that 
every kg is nonnegative. Because I IA I I  > 0, this implies that there is some 
Q 6 A whose inner product with X is strictly positive. Let U, A, and C be 
the Lie algebras of U, A, and L, respectively. By induction on ka, we 
may assume that V A - ~  is in the U-submodule of V generated by Vo and 
V+ n V - ,  so it suffices to show that [Cg, V^g} = VA. 

Choose u 6 Cg, 11 6 A, and u 6 Lo, such that the linear span (u, h,u) 
is a subalgebra of C, isomorphic to sla(E), and such that ĥ  is equal to  the 
inner product of (3 with p, for every weight p (see [3, Eqn. (7) of sIX.1, 
p. 4071). Then, if we restrict V to a representation of (u, h ,  v),  we see that  
vectors in the space VA have strictly positive weight, so the structure theory 
of s12 (EJ-modules implies that [u, K-u] = VA. 
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Definition 3.25 Let Q be the Lie algebra of Q.  Clearly, Q+[Q, Q] and 
Q-[Q, Ql are Lie subalgebras of Q; let Q+ and Q be the corresponding 
connected Lie subgroups of Q. ? 

In addition, we let 

Proposition 3.26 We may assume S\Q+ is a homomorphism, and <S\ 
Q^ 

is a crossed homomorphism. 

Proof (Q+) For a proof by induction, it suffices to  show that  if T is a : 

one-parameter subgroup of Q that is normalized by A, and N is a subgroup 9 

of Q+, normalized by TU,  such that [T, U] c N and S\N is a homoinor- 
phism, then we may assume S\TN is a homomorphism. From 3.13, we see 1 

that  there is a Borel function (b C X -+ Ku, such that S*lr is a crossed 
homomorphism. From 3.11, we see that centralizes N', so there is no 
harm in replacing a with a^, so we may assume S\T is a crossed homomor- ! 
phism. I 

If T c C n 0 ,  then, by definition of Q+ (and 3.24(2)), we must have I 
T c CQ(L)[Q, Q], so SIT is a homomorphism (see 3.15 and 3.19). On the 
other hand, if T f. CQ(A), then 3.16 applies, so we again conclude that, 
S\T is a homomorphism. Thus, from 3.19, we conclude that  S\TN is a 
homomorphism, as desired. 

i 
I 

(0;) From 3.13 (and 3.11), we see that we may assume S\Qy is a crossed 
homomorphism. So 3.18 implies that So+ is a crossed homomorphism. I 

? 

Similarly, by considering the opposite unipotent subgroup U ,  we 
obtain: I 
Proposition 3.27 There is a Borel function (b: X -+ K ,  such that the 
restriction S ^ \ Q - & ~  is a homomorphism, and S^\QGCRi^\ is a crossed .I 
homomorphism. 1 1 

1 4 a .  
'< 
f 

Proposition 3.28 We may assume S\Q- is a homornorphism, a n d  S\Q is 
a crossed homomorplusm. 

3 



Cocycle superrigidity for actions of non-semisimple groups 381 

Proof Because Q = Q-Qf, and [Q, Q] C Q-, we see from 3.18 that  
the second conclusion follows from the first. Choose a Bore1 function 
0: X -> K ,  as in Prop. 3.27. It  suffices to show that we may assume 
X^ = e. 

Step 1. We may assume X^ centralizes (Q:)~. For any r ? Q: and 
a.e. x ? X, we have r s  = r S z ,  so there is some k ? K, such that,  for 
a.e. x e X ,  we have x̂  6 cK ((Q$)')k. We may replace x^ with the 
function x i->- x ^ k l .  

Step 2. X^ centralizes ( Q $ ) ~ ~ ,  for every k ? (X x Q?. For r ,  s ? Q:, 
and a.e. x 6 X, we have ( ~ s ) ~  = r s s s ^ - ' 1 .  Because X ^  centralizes ( ~ s ) ~  
and rs (see Step I ) ,  this implies that X 9  centralizes s s (x l r )K ,  as desired. 

Step 3. For every r E Q$ and k 6 ( (X  x Qf,)^), there 2s some k' c ( X  x 
Qo)^ with ri = ri' . First note that,  modulo CK ( (Q i ) s ) ,  the cocycle IClgZ 
is a homomorphism (see 3.7). Because the image of a homomorphism is 
always a subgroup, this implies that,  for any k 6 ((X x Q$)^), there is 
some r <S Q$ with (. ,r)^ 6 ((Q$)')k a.e.. 

Therefore, it will suffice to show that ( X  x Q+)^ centralizes (Q?. 
Because Slo+ is a homomorphism (so (X x Q+)^ centralizes (Q~) ' ) ,  and 
[ Q k  Q^} c Q + ,  Lem. 3.17 provides this conclusion. 

Step 4. is centralized by x^. For r Q$ and u ? U ,  we have 

K M 
(xu, T " ) ~  = (x, ~ ) - ~ ( 2 Â ¥  7-y (xr, u)" â (a ; ,  r )O(x~u)  " K ,  

K M so rus = rS^-^ " = rsuM, because (x,^ centralizes ( Q a S  (see 3.10). 
Therefore, for k 6 ((X x Q̂ }, we have 7 ~ u s i  = rsuMk = rskuM . Since 
X'1' centralizes u-'̂  and rsk (for the latter, see Steps 2 and 3), this implies 
that X^ centralizes rusk. Thus, because 

( ~ $ 1 ~  = (r" 1 r â Q&U â u ) ~  (see 3.24(5)) 

c'(rusi 1 r 6 Q;,U e V, k 6 ((X x O F ) ) ,  

we have the desired conclusion. 

Step 5. We may assume X ^  = e. From Step 4, we see that replacing a 
with the equivalent cocycle o f t  will not change S\@, so we may assume 

:c^ = e. 
D 

Proposition 3.29 S\g is a homomorphism 
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Proof For g 6 G, let ( x , ~ ) ~  = (x, g)'(x, glM. For r 6 Q and u 6 U, 
because ( . , r IK centralizes uM, we have ( Â ¥ , r ~ )  = rsuM is essentially 
constant. Thus, P\QU is a crossed 1~omomorphism, so the cocycle qQU 
is a homomorphism, modulo CK ((QU)s) (see 3.7). Then, because QU 
is solvable, the fact that connected, compact, solvable groups are abelian 
(see 2.12), implies that [Qu, Q U ] ~  C ((QU)') , so P\[QU,QU] is a homo- 
morphism. In particular, slQon[c/,Q] is a homomorphism. 

Now Qo is generated by Qo n [U, Q], CQ(L), and [Q, Q ] .  The restric- 
tion of <S to  each of these subgroups is a homomorphism, so we conclude 
from 3.19 that  SIQO is a homomorphism. Then, because Q is generated by 
Qo, Q ,  and Q4', we conclude from 3.19 that <S\Q is a homomorphism. 

a 

This proposition provides the induction step in a proof of the following 
important corollary: 

Corollary 3.30 We may assume SIR is a homomorphism. 
0 

Proposition 3.31 We have cR-(Rs)  = e. 

Proof Because CK(S) is centralized (hence noimalized) by A1 and 5 ,  and 
is normalized by K ,  we see that CK(S) is a normal subgroup of H .  Being 
also compact, it must be trivial. Thus, letting S' be the Zariski closure of 
(R'), it suffices to show 5' 4 H, for then S' = S .  Furthermore, because 
G = LR, we need only show that (.Y x L)Â and (X x R)Â each normalize 5'. 

For u Â L and r â R, we have rs(x~u)a = rus ? R ~ ,  so we see that  
(a;, u)Â¡ normalizes S'. 

Because SIR is a homomorphism, we know that (X x R ) ~  centralizes 5". 
It  is obvious from the definition of S' that RS normalizes 5'. 

0 

Corollary 3.32 a is a homomorphism. 

Proof Because M and S\R are homomorphisms, it only remains to  show 
that  K. is a homomorpl~ism. 

For u â L and r â R, we have rus = rs(zgu)a, so the proposition implies 
that  (., u)Â is essentially constant. 

Because S\R is a homomorphism, we know that (X x R)^ centralizes R'- 
Hence, the proposition implies that (A' x R ) ~  = e. 
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4 The Remaining Proofs 

In this section, we describe how to finish the proof of Theorem 1.4 (see 4.1) 
and we prove Corollary 1.6 (see 4.2). 

4.1 Proof of the remaining case of Theorem 1.4 

The notation and hypotheses of Theorem 1.4 are in effect throughout this 
subsection, but, unlike in $3, we do not assume that R a d G  is nilpotent, 
nor that  G has no nontrivial, compact, semisimple quotients (see 3.1). Let 

(1) N = nil G; and 

(2) R be the product of Rad G with the maximal compact factor of a Levi 
subgroup of G. 

Propos i t i on  4.1 We may assume SIR is a crossed homomorphism. 

P r o o f  From the main proof (Â§3) applied to the group L N ,  we see that  we 
may assume SIN is a homomorphism. Let Ku be the closure of ( (X x u ) ~ ) .  
Then 3.14 implies there is a Bore1 function 4:  X Ã‘/ Ku, such that  SbIcRiu) 
is a crossed homomorphism. Because K u  centralizes Ns (see 3.10), we have 
S@lN = S\N, so there is no harm in replacing a with the cohomologous 
cocycle a^ .  Thus, we may assume SIcnW} is a crossed homomorphism. 
Then, because R = N CR(U) and [N, R] C N ,  Lemma 3.18 implies that  
SIR is a crossed homomorphism. 

a 

Propos i t i on  4.2 (cf. 3.31) We have c ~ ( R ~ )  = e. 

P r o o f  Let 5' be the Zariski closure of (R'). As in the proof of 3.31, we 
wish t o  show S' is normalized by ( X  x L)O and (X x R)Â¡ 

For u ? L and r e R, we have rus = T ~ ( ~ ~ " ) " ,  so we see that  (w 
normalizes 5". 

For any r ,  s ? R,  we have (rs)' = rssŝ '̂"', so 8(x,r)K â ( R ~ ) .  
This implies that (X x R)^ normalizes S'. It is obvious from the definition 
of Sf that  R~ also normalizes S'. 

a 

Corol la ry  4.3 (cf. 3.32) a is a homomorphism. 
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Proof Because G = LR, it suffices t80 show that a\L and alR are homo- 
morphisms. 

For u ? L and T G R, we have rus = rs(x~")O, so the proposition implies 
that  (-, u)" is essentially constant. Therefore, atr, is a homomorphism. 

For any T,S 6 R,  we have (TS)' = ~ ~ s ~ ( ~ ^ ~ ,  so the proposition 
implies that  (., T)^ is essentially constant. Therefore, KtR is a homomor- 
phism. Because SIR is a crossed homomorphism, this implies that  Q\R is a 
homomorphism. 

D 

4.2 Proof of Corollary 1.6 

The  notation and hyp~t~heses of Corollary 1.6 are in effect throughout this 
subsection. We wish to  verify the hypotheses of Thm. 1.4. 

By passing t o  an ergodic component of X X" H / H O ,  which is a finite 
cover of X ,  we may assume H is connected (cf. [ l l ,  Prop. 9.2.6, p. 1681). 
Then we may write H = S o (MI<), where 

(1) S is a connected, split, solvable subgroup; 

(2) Ad is connected and semisimple, with no compact factors; 

(3) K is a compact subgroup that centralizes Ad; and 

By assumption, the Zariski hull of a\.\xL is reductive. Then, because 
L has the Kazhdan Property (see [ l l ,  Thm. 7.1.4, p. 130]), we see that the 
center of this Zariski hull is conlpact (see [ll, Thnl. 9.1.1, p. 1621). Thus, 
the Zariski hull is contained in (a  conjugate of) AlK, so, by replacing a 
with an  equivalent cocycle, we may assume (X x L)" c MK. 

Now a induces a cocycle a: X x G -+ H/(SI<) S AI/(A4" n I<). 
Although the statement of Zimmer's Theorem (1.3) assumes that  G is 

semisimple, the proof shows that this hypothesis is not necessary if the 
Zariski hull of the cocycle is assumed to be semisimple. Thus, we have the 
following: 

Theorem 4.4 ([[Ill, cf. proof of Theorem 5.2.5, p. 981) E is cohomol- 
O ~ O U S  to a homomorphism. 

a 
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So there is no harm in assuming that 6 itself is a homomorphism. By 
replacing G k i th  a finite cover (see 2.13), we may assume that a lifts to  a 
homomorphism a :  G + M. 

Note that, because ( X  x L)Â c M K ,  the definition of a implies that ,  
for every 1 G L, we have (x.1)" e l u K  for a.e. x â X .  

Let J be the product of RadG with the maximal compact factor of a 
Levi subgroup of G; then J is a connected, normal subgroup of G. There- 
fore, because Gz is Zariski dense in M/ (M n A'), we see that J0 is normal 
in M/{M 10. But M / ( M  II I<) has no nontrivial, normal subgroups that  
are solvable or compact, so we conclude that  J z  is trivial. Because G = L J, 
this implies that Lo is Zariski dense in M .  Because connected, semisirn- 
pie subgroups have finite index in their Zariski closure [5, Thm. VIII.3.2, 
p. 1121, this implies Lo = M ,  so H = S L u K .  

Thus, the hypotheses of Theorem 1.4 are verified, so we conclude that  
a is co1~omologous to a homomorphism. This completes the proof of Corol- 
lary 1.6. 
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